Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrolysis-concentrator

Pyrolyzing the material of interest separately from the analysis allows a greater latitude in the selection of the pyrolysis conditions. For instance, in this case, the gas flow, which contained about 25% oxygen, would have been incompatible with the capillary GC column. On the other hand, direct coupling of the pyrolysis step to the analytical step (Py-GC and Py-GC/MS) would have allowed examination of the most volatile products formed, which could not be done here due to losses during the concentration of the hexane and due to the huge hexane solvent peak in the early portion of the chromatogram. A modem pyrolysis concentrator unit allows the best... [Pg.142]

Figure 2. (a) Pyrolysis/Concentrator/GC/RD. Pyrogramfrom pulse pyrolysis (750 C/10 sec) of propylene-1-butene copolymer, (b) Peak area ratio fiJB versus % 1-butene concentration. [Pg.15]

Figure 4. Pyrolysis/Concentrator/GC/MSD. Total Ion Chromatogram (TIC) of PBO fibers pulse pyrolyzed at 1000 C for 20 sec. (a) as spun (b) heat treated 600 C (c) Heat treated at 665 C (d) Heat treated at 1200 C. Figure 4. Pyrolysis/Concentrator/GC/MSD. Total Ion Chromatogram (TIC) of PBO fibers pulse pyrolyzed at 1000 C for 20 sec. (a) as spun (b) heat treated 600 C (c) Heat treated at 665 C (d) Heat treated at 1200 C.
The pyrolysis of CR NH (<1 mbar) was perfomied at 1.3 atm in Ar, spectroscopically monitoring the concentration of NH2 radicals behind the reflected shock wave as a fiinction of time. The interesting aspect of this experiment was the combination of a shock-tube experiment with the particularly sensitive detection of the NH2 radicals by frequency-modulated, laser-absorption spectroscopy [ ]. Compared with conventional narrow-bandwidth laser-absorption detection the signal-to-noise ratio could be increased by a factor of 20, with correspondingly more accurate values for the rate constant k T). [Pg.2125]

With aldehydes, primary alcohols readily form acetals, RCH(OR )2. Acetone also forms acetals (often called ketals), (CH2)2C(OR)2, in an exothermic reaction, but the equiUbrium concentration is small at ambient temperature. However, the methyl acetal of acetone, 2,2-dimethoxypropane [77-76-9] was once made commercially by reaction with methanol at low temperature for use as a gasoline additive (5). Isopropenyl methyl ether [116-11-OJ, useful as a hydroxyl blocking agent in urethane and epoxy polymer chemistry (6), is obtained in good yield by thermal pyrolysis of 2,2-dimethoxypropane. With other primary, secondary, and tertiary alcohols, the equiUbrium is progressively less favorable to the formation of ketals, in that order. However, acetals of acetone with other primary and secondary alcohols, and of other ketones, can be made from 2,2-dimethoxypropane by transacetalation procedures (7,8). Because they hydroly2e extensively, ketals of primary and especially secondary alcohols are effective water scavengers. [Pg.94]

The Du Pont HaskeU Laboratory for Toxicology and Industrial Medicine has conducted a study to determine the acute inhalation toxicity of fumes evolved from Tefzel fluoropolymers when heated at elevated temperatures. Rats were exposed to decomposition products of Tefzel for 4 h at various temperatures. The approximate lethal temperature (ALT) for Tefzel resins was deterrnined to be 335—350°C. AH rats survived exposure to pyrolysis products from Tefzel heated to 300°C for this time period. At the ALT level, death was from pulmonary edema carbon monoxide poisoning was probably a contributing factor. Hydrolyzable fluoride was present in the pyrolysis products, with concentration dependent on temperature. [Pg.370]

Thermochemical Liquefaction. Most of the research done since 1970 on the direct thermochemical Hquefaction of biomass has been concentrated on the use of various pyrolytic techniques for the production of Hquid fuels and fuel components (96,112,125,166,167). Some of the techniques investigated are entrained-flow pyrolysis, vacuum pyrolysis, rapid and flash pyrolysis, ultrafast pyrolysis in vortex reactors, fluid-bed pyrolysis, low temperature pyrolysis at long reaction times, and updraft fixed-bed pyrolysis. Other research has been done to develop low cost, upgrading methods to convert the complex mixtures formed on pyrolysis of biomass to high quaHty transportation fuels, and to study Hquefaction at high pressures via solvolysis, steam—water treatment, catalytic hydrotreatment, and noncatalytic and catalytic treatment in aqueous systems. [Pg.47]

Aromatic Hydrocarbons. These are the most toxic of the hydrocarbons and inhalation of the vapor can cause acute intoxication. Benzene is particularly toxic and long-term exposure can cause anemia and leukopenia, even with concentrations too low for detection by odor or simple instmments. The currendy acceptable average vapor concentration for benzene is no more than 1 ppm. PolycycHc aromatics are not sufftcientiy volatile to present a threat by inhalation (except from pyrolysis of tobacco), but it is known that certain industrial products, such as coal tar, are rich in polycycHc aromatics and continued exposure of human skin to these products results in cancer. [Pg.370]

Concentrations depend on severity of pyrolysis. At a high severity (- 2000° C) acetylene/ethylene ratio is 1, but at lower severity acetylene concentration is reduced and ethylene is increased. [Pg.384]

Pyrolysis ofVegetals. Many pubhcations concern the synthesis of dihydroxybenzenes by wood, lignites, and tree bark pyrolysis (61). The selective extraction of these compounds in low concentration from the cmde mixture remains a significant problem. So far, the price of the extraction overcomes the advantage of starting from a cheap starting material. [Pg.489]

In TBP extraction, the yeUowcake is dissolved ia nitric acid and extracted with tributyl phosphate ia a kerosene or hexane diluent. The uranyl ion forms the mixed complex U02(N02)2(TBP)2 which is extracted iato the diluent. The purified uranium is then back-extracted iato nitric acid or water, and concentrated. The uranyl nitrate solution is evaporated to uranyl nitrate hexahydrate [13520-83-7], U02(N02)2 6H20. The uranyl nitrate hexahydrate is dehydrated and denitrated duting a pyrolysis step to form uranium trioxide [1344-58-7], UO, as shown ia equation 10. The pyrolysis is most often carried out ia either a batch reactor (Fig. 2) or a fluidized-bed denitrator (Fig. 3). The UO is reduced with hydrogen to uranium dioxide [1344-57-6], UO2 (eq. 11), and converted to uranium tetrafluoride [10049-14-6], UF, with HF at elevated temperatures (eq. 12). The UF can be either reduced to uranium metal or fluotinated to uranium hexafluoride [7783-81-5], UF, for isotope enrichment. The chemistry and operating conditions of the TBP refining process, and conversion to UO, UO2, and ultimately UF have been discussed ia detail (40). [Pg.318]

Soot. Emitted smoke from clean (ash-free) fuels consists of unoxidized and aggregated particles of soot, sometimes referred to as carbon though it is actually a hydrocarbon. Typically, the particles are of submicrometer size and are initially formed by pyrolysis or partial oxidation of hydrocarbons in very rich but hot regions of hydrocarbon flames conditions that cause smoke will usually also tend to produce unbumed hydrocarbons with thek potential contribution to smog formation. Both maybe objectionable, though for different reasons, at concentrations equivalent to only 0.01—0.1% of the initial fuel. Although thek effect on combustion efficiency would be negligible at these levels, it is nevertheless important to reduce such emissions. [Pg.530]

The majority of the cyanuric acid produced commercially is made via pyrolysis of urea [57-13-6] (mp 135°C) primarily employing either directiy or indirectly fired stainless steel rotary kilns. Small amounts of CA are produced by pyrolysis of urea in stirred batch or continuous reactors, over molten tin, or in sulfolane. The feed to the kilns can be either urea soHd, melt, or aqueous solution. Since conversion of urea to CA is endothermic and goes through a plastic stage, heat and mass transport are important process considerations. The kiln operates under slight vacuum. Air is drawn into the kiln to avoid explosive concentrations of ammonia (15—27 mol %). [Pg.420]

Both Mitsubishi and Mitsui TLEs differ drastically from other designs. Mitsubishi offers a TLE with an integral steam dmm and cyclone for vapor—hquid separation. The pyrolysis gas flows in the shell side, and is claimed to accomplish the decoking of the furnace and the transferline exchanger in one operation. The Mitsui quench cooler uses three concentric tubes as the tube element, and requires steam—air decoking to clean the TLE (58,59). [Pg.438]

The use of free-radical reactions for this mode of ring formation has received rather more attention. The preparation of benzo[Z)]thiophenes by pyrolysis of styryl sulfoxides or styryl sulfides undoubtedly proceeds via formation of styrylthiyl radicals and their subsequent intramolecular substitution (Scheme 18a) (75CC704). An analogous example involving an amino radical is provided by the conversion of iV-chloro-iV-methylphenylethylamine to iV-methylindoline on treatment with iron(II) sulfate in concentrated sulfuric acid (Scheme 18b)(66TL2531). [Pg.100]

Methylsuccinic acid has been prepared by the pyrolysis of tartaric acid from 1,2-dibromopropane or allyl halides by the action of potassium cyanide followed by hydrolysis by reduction of itaconic, citraconic, and mesaconic acids by hydrolysis of ketovalerolactonecarboxylic acid by decarboxylation of 1,1,2-propane tricarboxylic acid by oxidation of /3-methylcyclo-hexanone by fusion of gamboge with alkali by hydrog. nation and condensation of sodium lactate over nickel oxide from acetoacetic ester by successive alkylation with a methyl halide and a monohaloacetic ester by hydrolysis of oi-methyl-o -oxalosuccinic ester or a-methyl-a -acetosuccinic ester by action of hot, concentrated potassium hydroxide upon methyl-succinaldehyde dioxime from the ammonium salt of a-methyl-butyric acid by oxidation with. hydrogen peroxide from /9-methyllevulinic acid by oxidation with dilute nitric acid or hypobromite from /J-methyladipic acid and from the decomposition products of glyceric acid and pyruvic acid. The method described above is a modification of that of Higginbotham and Lapworth. ... [Pg.56]

Cyclohexadiene has been prepared by dehydration of cyclohexen-3-ol,3 by pyrolysis at 540° of the diacetate of cyclohexane-1,2-diol,4 by dehydrobromination with quinoline of 3-hromocyclohexene,6 by treating the ethyl ether of cyclohexen-3-ol with potassium bisulfatc,6 7 by heating cyclohexene oxide with phthalic anhydride,8 by treating cyclohexane-1,2-diol with concentrated sulfuric acid,9 by treatment of 1,2-dibromocyclo-hexane with tributylamine,10 with sodium hydroxide in ethylene glycol,10 and with quinoline,6 and by treatment of 3,6-dibromo-cyclohexene with sodium.6... [Pg.33]

The oxygen index method was used to demonstrate synergy. This method measures ease of ignition, that is the facility with which a material or it s pyrolysis products can be ignited under given conditions of temperature and oxygen concentration. This test is indicative of the intrinsic flamability of a material but... [Pg.344]

The same approach with Ni-thiolate precursor has also successfully produced rhombohedral NiS (millerite) nanorods and triangular nanoplates with a nearly 1 1 ratio (Fig. 20.2) [5]. The lengths of nanorods are controllable through different heating conditions and range from 15 to 50 nm with aspect ratios of approximately 4. The pyrolysis temperature and the reactant concentration, when the precursor was prepared, mainly influence the rod or triangle proportions. [Pg.297]

Chemical vapor deposition (CVD) of carbon from propane is the main reaction in the fabrication of the C/C composites [1,2] and the C-SiC functionally graded material [3,4,5]. The carbon deposition rate from propane is high compared with those from other aliphatic hydrocarbons [4]. Propane is rapidly decomposed in the gas phase and various hydrocarbons are formed independently of the film growth in the CVD reactor. The propane concentration distribution is determined by the gas-phase kinetics. The gas-phase reaction model, in addition to the film growth reaction model, is required for the numerical simulation of the CVD reactor for designing and controlling purposes. Therefore, a compact gas-phase reaction model is preferred. The authors proposed the procedure to reduce an elementary reaction model consisting of hundreds of reactions to a compact model objectively [6]. In this study, the procedure is applied to propane pyrolysis for carbon CVD and a compact gas-phase reaction model is built by the proposed procedure and the kinetic parameters are determined from the experimental results. [Pg.217]

The effect of TOS on the product distribution during the pyrolysis of R22 over CU-AIF3 catalyst is shown in Fig. 3. The amoimt of halogen ion trapped in NaOH solution was determined by IC. The concentration of Cl formed during the pyrolysis of R22 was higher than the concentration of F at all TOS. This result is a consequence of the facile cleavage of the C-Cl bond in comparison to the C-F bond. Bond dissociation energy for the C-element of R22 is followed by the order C-C1[Pg.235]


See other pages where Pyrolysis-concentrator is mentioned: [Pg.366]    [Pg.14]    [Pg.14]    [Pg.366]    [Pg.14]    [Pg.14]    [Pg.276]    [Pg.217]    [Pg.22]    [Pg.24]    [Pg.382]    [Pg.383]    [Pg.388]    [Pg.390]    [Pg.227]    [Pg.523]    [Pg.60]    [Pg.306]    [Pg.49]    [Pg.420]    [Pg.439]    [Pg.1]    [Pg.339]    [Pg.165]    [Pg.1331]    [Pg.59]    [Pg.76]    [Pg.302]    [Pg.83]    [Pg.236]    [Pg.438]    [Pg.553]   
See also in sourсe #XX -- [ Pg.17 , Pg.18 ]




SEARCH



© 2024 chempedia.info