Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protective butyl

Alkylamiaes are toxic. Both the Hquids and vapors can cause severe irritations to mucous membranes, eyes, and skin. Protective butyl mbber gloves, aprons, chemical face shields, and self-contained breathing apparatus should be used by aH personnel handling alkylamiaes. Amines are flammable and the lower mol wt alkylamiaes with high vapor pressures at ordiaary temperatures have low flash poiats. Amines should be handled ia weH-veatilated areas only after eliminating potential sources of ignition. [Pg.201]

Small Quantities. Wear eye protection, butyl rubber gloves,10 and laboratory coat. Work in the fume hood. For each 1 mL of dimethylformamide, add 10 mL of 10% sodium hydroxide solution. Heat the mixture under reflux for 30 minutes, or allow to stand at room temperature for 48 hours. Wash the liquid into the drain.10... [Pg.239]

Wear eye protection, butyl rubber gloves,10 and laboratory coat. Cover spill with a 1 1 1 mixture by weight of sodium carbonate or calcium carbonate, clay cat litter (bentonite), and sand.11 Scoop the solid into a container, transport to the fume hood, and slowly add to water allowing 20 mL of water for each 1 g of hydrazine. Remove the clay and sand by filtration. For each 1 g of hydrazine, place 120 mL (about 25% excess) of household laundry bleach (containing 5.25% sodium hypochlorite) into a three-necked, round-bottom flask equipped with a stirrer, thermometer, and dropping funnel. Add the aqueous hydrazine dropwise to the stirred hypochlorite solution at such a rate that the temperature is maintained at 45-50°C. The addition takes about 1 hour. Stirring is continued overnight (at least 12 hours). The reaction mixture can be flushed down the drain with at least 50 times its volume of water.12 13... [Pg.286]

Precaution Use splash goggles, respiratory protection, butyl rubber gloves corrosive, flamm. incompat. with strong oxidants Hazardous Decomp. Prods. Thermal decomp, produces toxic fumes of NO ... [Pg.378]

The blocking and deblocking of carboxyl groups occurs by reactions similar to those described for hydroxyl and amino groups. The most important protected derivatives are /-butyl, benzyl, and methyl esters. These may be cleaved in this order by trifluoroacetic acid, hydrogenolysis, and strong acid or base (J.F.W. McOmie, 1973). 2,2,2-Trihaloethyl esters are cleaved electro-lytically (M.F. Semmelhack, 1972) or by zinc in acetic acid like the Tbeoc- and Tceoc-protected hydroxyl and amino groups. [Pg.165]

In each step of the usual C-to-N peptide synthesis the N-protecting group of the newly coupled amino acid must be selectively removed under conditions that leave all side-chain pro-teaing groups of the peptide intact. The most common protecting groups of side-chains (p. 229) are all stable towards 50% trifluoroacetic acid in dichloromethane, and this reagent is most commonly used for N -deprotection. Only /ert-butyl esters and carbamates ( = Boc) are solvolyzed in this mixture. [Pg.235]

Shipment, Stora.ge, ndPrices. Methyl vinyl ether is available in tank cars or cylinders, while the other vinyl ethers are available in tank cars, tank wagons, or dmms. Mild steel, stainless steel, and phenoHc-coated steel are suitable for shipment and storage. If protected from air, moisture, and acidic contamination, vinyl ethers are stable for years. United States bulk prices in 1991 for methyl vinyl ether, ethyl vinyl ether, and butyl vinyl ether were listed as about 5.78/kg, 6.28/kg, and 6.08/kg, respectively. [Pg.116]

A.ntioxidants. PhenoHc antioxidants, added at about 0.1—0.5 phr, are usually chosen from among butylated hydroxytoluene [128-37-0] (BHT), and Nnonylphenol [104-40-5] for Hquid stabilizer formulations and bisphenol A [80-05-7] (2,2-bis-(/)-hydroxyphenyl)propane) for the soHd systems. Low melting thioesters, dilauryl thiodipropionate [123-28-4] (DLTDP) or distearyl thiodipropionate [693-36-7] (DSTDP) are commonly added along with the phenoHcs to enhance their antioxidant performance. Usually a 3 1 ratio of thiodipropionate to phenoHc antioxidant provides the desired protection. Most mixed metal stabilizer products contain the antioxidant iagredient. [Pg.550]

Diarylamiaes fuactioa as mbber antioxidants by breaking the peroxidative chain reactions leading to mbber deterioration. Nearly all commercial synthetic mbbers (see Elastomers, synthetic), including neoprene, butyl, styrene—butadiene, and the acrylonitrile—butadiene mbbers, can be protected with about 1—2% of an alkylated diphenylamine. DPA itself is not used as a mbber antioxidant. An objectionable feature of these antioxidants is that they cause discoloration and staining which limits their use to applications where this is not important. [Pg.244]

The synergistic effect of a hydroperoxide decomposer, eg, dilauryl thiodipropionate [123-28-4] (34), and a radical scavenger, eg, tetrakis[methylene(3,5-di-/ f2 butyl-4-hydroxyhydrocinnamate)]methane (9), ia protecting polypropylene duting an oxygen-uptake test at 140°C is shown ia Table 3. [Pg.228]

Oligomeric hindered amine light stabilizers are effective thermal antioxidants for polypropylene. Thus 0.1% of A[,Af-bis(2,2,6,6-tetramethyl-4-piperadinyl)-l,6-hexanediamine polymer, with 2,4,6-trichloro-l,3,5-triazine and 2,4,4-trimethyl-2-pentaneainine [70624-18-9] (35) (Fig. 5), protects polypropylene multifilaments against oxidation when exposed at 120°C in a forced-air oven (22) for 47 days. 3,5-Di-/ l -butyl-4-hydroxytoluene [128-37-0] (0.1%) affords protection for only 14 days. [Pg.229]

Stabilization of Elastomers. Polyunsaturated elastomers are sensitive to oxidation. Stabili2ers are added to the elastomers prior to vulcani2ation to protect the mbber during drying and storage. Nonstaining antioxidants such as butylated hydroxytoluene (1),... [Pg.232]

Chloroformates are shipped in nonretumable 208-L (55-gal) polyethylene dmms with carbon steel overpacks or high density polyethylene dmms. Eor bulk shipments, insulated stainless-steel tank containers and tmcks provide secure protection. Tank tmck and rail car quantities are shipped using equipment dedicated for these types of products. Materials such as isopropyl chloroformate, benzyl chloroformate, and j -butyl chloroformate that require refrigeration are precooled when shipped in bulk containers. Bulk shipments that are precooled must proceed to the destination without layover. Dmm shipments of IPCE, BCE, and SBCE must be shipped in refrigerated containers. Many of the chloroformates are only shipped in tmck load shipments. The U.S. Department of Transportation (DOT) Hazardous Materials Regulations control the shipments of chloroformates, as described in Table 3. [Pg.40]

Isobutjiene—isoprene elastomer (Butyl) has high resistance to oxidation, resists chemical attack, and is the elastomer most impervious to air. Because of these properties it is often used for protective garments, inflated air stmctures, cold air balloons, and fumigation covers. [Pg.297]

Polyisobutylene has the chemical properties of a saturated hydrocarbon. The unsaturated end groups undergo reactions typical of a hindered olefin and are used, particularly in the case of low mol wt materials, as a route to modification eg, the introduction of amine groups to produce dispersants for lubricating oils. The in-chain unsaturation in butyl mbber is attacked by atmospheric ozone, and unless protected can lead to cracking of strained vulcanizates. Oxidative degradation, which leads to chain cleavage, is slow, and the polymers are protected by antioxidants (75). [Pg.484]

A third approach to 3-amino-/3-lactams is by Curtius rearrangement of the corresponding acyl azides. These are readily prepared from r-butyl carbazides, available via photochemical ring contraction of 3-diazopyrrolidine-2,4-diones in the presence of f-butyl carbazate (c/. Section 5.09.3.3.2). Thus treatment of (201) with trifluoroacetic acid followed by diazotiz-ation gives the acyl azide (202) which, in thermolysis in benzene and subsequent interception of the resulting isocyanate with r-butanol, yields the protected 3-amino-/3-lactam (203) (73JCS(P1)2907). [Pg.265]


See other pages where Protective butyl is mentioned: [Pg.112]    [Pg.112]    [Pg.320]    [Pg.286]    [Pg.286]    [Pg.112]    [Pg.112]    [Pg.320]    [Pg.286]    [Pg.286]    [Pg.256]    [Pg.845]    [Pg.887]    [Pg.96]    [Pg.162]    [Pg.205]    [Pg.107]    [Pg.85]    [Pg.235]    [Pg.13]    [Pg.324]    [Pg.373]    [Pg.419]    [Pg.69]    [Pg.213]    [Pg.224]    [Pg.292]    [Pg.202]    [Pg.463]    [Pg.505]    [Pg.80]    [Pg.148]    [Pg.478]    [Pg.556]    [Pg.398]    [Pg.148]   
See also in sourсe #XX -- [ Pg.825 ]

See also in sourсe #XX -- [ Pg.680 ]




SEARCH



© 2024 chempedia.info