Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propylene oxide epoxidation

STYRENE AND PROPYLENE OXIDE EPOXIDATION W. HYDROPEROXIDE ARCO/HALCON... [Pg.42]

Ans Ethylene a-alkenes (oligomerization), acetaldehyde (oxidation) propylene n-butyraldehyde (hydroformylation), propylene oxide (epoxidation) CO acetic acid, acetic anhydride (carbonylation). [Pg.19]

Three membered rings that contain oxygen are called epoxides At one time epox ides were named as oxides of alkenes Ethylene oxide and propylene oxide for exam pie are the common names of two industrially important epoxides... [Pg.260]

Substitutive lUPAC nomenclature names epoxides as epoxy derivatives of alkanes According to this system ethylene oxide becomes epoxyethane and propylene oxide becomes 1 2 epoxypropane The prefix epoxy always immediately precedes the alkane ending it is not listed m alphabetical order like other substituents... [Pg.260]

ARCO has developed a coproduct process which produces KA along with propylene oxide [75-56-9] (95—97). Cyclohexane is oxidized as in the high peroxide process to maximize the quantity of CHHP. The reactor effluent then is concentrated to about 20% CHHP by distilling off unreacted cyclohexane and cosolvent tert-huty alcohol [75-65-0]. This concentrate then is contacted with propylene [115-07-1] in another reactor in which the propylene is epoxidized with CHHP to form propylene oxide and KA. A molybdenum catalyst is employed. The product ratio is about 2.5 kg of KA pet kilogram of propylene oxide. [Pg.242]

Propylene oxide-based glycerol can be produced by rearrangement of propylene oxide [75-56-9] (qv) to allyl alcohol over triUthium phosphate catalyst at 200—250°C (yield 80—85%) (4), followed by any of the appropriate steps shown in Figure 1. The specific route commercially employed is peracetic acid epoxidation of allyl alcohol to glycidol followed by hydrolysis to glycerol (5). The newest international synthesis plants employ this basic scheme. [Pg.347]

An oxirane process utilizes ethylbenzene to make the hydroperoxide, which then is used to make propylene oxide [75-56-9]. The hydroperoxide-producing reaction is similar to the first step of cumene LPO except that it is slower (2,224,316—318). In the epoxidation step, a-phenylethyl alcohol [98-85-1] is the coproduct. It is dehydrated to styrene [100-42-5]. The reported 1992 capacity for styrene by this route was 0.59 X 10 t/yr (319). The corresponding propylene oxide capacity is ca 0.33 x 10 t/yr. The total propylene oxide capacity based on hydroperoxide oxidation of propylene [115-07-1] (coproducts are /-butyl alcohol and styrene) is 1.05 x 10 t/yr (225). [Pg.345]

The addition of an oxygen atom to an olefin to generate an epoxide is often catalyzed by soluble molybdenum complexes. The use of alkyl hydroperoxides such as tert-huty hydroperoxide leads to the efficient production of propylene oxide (qv) from propylene in the so-called Oxirane (Halcon or ARCO) process (79). [Pg.477]

Propylene oxide and other epoxides undergo homopolymerization to form polyethers. In industry the polymerization is started with multihinctional compounds to give a polyether stmcture having hydroxyl end groups. The hydroxyl end groups are utilized in a polyurethane forming reaction. This article is mainly concerned with propylene oxide (PO) and its various homopolymers that are used in the urethane industry. [Pg.348]

Homopolymers of PO and other epoxides are named a number of ways after the monomer, eg, poly(propylene oxide) (PPO) or polymethjioxirane from a stmctural point of view, polyoxypropylene or poly(propylene glycol) or from the Chemicaly hstracts (CA) name, poly[oxy(methyl-l,2-ethanediyl)], a-hydro- CO-hydroxy-. Common names are used extensively in the Hterature and in this article. [Pg.348]

Propylene oxide and other epoxides polymerize by ring opening to form polyether stmctures. Either the methine, CH—O, or the methylene, CH2—O, bonds ate broken in this reaction. If the epoxide is unsymmetrical (as is PO) then three regioisomers are possible head-to-tad (H—T), head-to-head (H—H), and tad-to-tad (T—T) dyads, ie, two monomer units shown as a sequence. The anionic and... [Pg.349]

Propylene Oxide. Propylene oxide is produced from propylene by two main processes. The first is chi orohydrin a tion of propylene at ca 310 K, followed by epoxidation of the chi orohydrin by calcium hydroxide. [Pg.129]

Polymerization to Polyether Polyols. The addition polymerization of propylene oxide to form polyether polyols is very important commercially. Polyols are made by addition of epoxides to initiators, ie, compounds that contain an active hydrogen, such as alcohols or amines. The polymerization occurs with either anionic (base) or cationic (acidic) catalysis. The base catalysis is preferred commercially (25,27). [Pg.134]

Propylene oxide can be copolymerized with other epoxides, such as ethylene oxide (qv) (25,29,30) or tetrahydrofiiran (31,32) to produce copolymer polyols. Copolymerization with anhydrides (33) or CO2 (34) results in polyesters and polycarbonates (qv), respectively. [Pg.134]

Hydrogen Sulfide andMercaptans. Hydrogen sulfide and propylene oxide react to produce l-mercapto-2-propanol and bis(2-hydroxypropyl) sulfide (69,70). Reaction of the epoxide with mercaptans yields 1-aLkylthio- or l-arylthio-2-propanol when basic catalysis is used (71). Acid catalysts produce a mixture of primary and secondary hydroxy products, but ia low yield (72). Suitable catalysts iaclude sodium hydroxide, sodium salts of the mercaptan, tetraaLkylammonium hydroxide, acidic 2eohtes, and sodium salts of an alkoxylated alcohol or mercaptan (26,69,70,73,74). [Pg.135]

Friedel-Crafts. 2-Phenylpropanol results from the catalytic (AlCl, FeCl, or TiCl reaction of ben2ene and propylene oxide at low temperature and under anhydrous conditions (see Friedel-CRAFTS reactions). Epoxide reaction with toluene gives a mixture of 0-, m- and -isomers (75,76). [Pg.135]

Epoxid tion. Epoxidation, also referred to as saponification or dehydrochlorination, of propylene chlorohydrin (both isomers) to propylene oxide is accompHshed using a base, usually aqueous sodium hydroxide or calcium hydroxide. [Pg.137]

Hydroperoxide Process. The hydroperoxide process to propylene oxide involves the basic steps of oxidation of an organic to its hydroperoxide, epoxidation of propylene with the hydroperoxide, purification of the propylene oxide, and conversion of the coproduct alcohol to a useful product for sale. Incorporated into the process are various purification, concentration, and recycle methods to maximize product yields and minimize operating expenses. Commercially, two processes are used. The coproducts are / fZ-butanol, which is converted to methyl tert-huty ether [1634-04-4] (MTBE), and 1-phenyl ethanol, converted to styrene [100-42-5]. The coproducts are produced in a weight ratio of 3—4 1 / fZ-butanol/propylene oxide and 2.4 1 styrene/propylene oxide, respectively. These processes use isobutane (see Hydrocarbons) and ethylbenzene (qv), respectively, to produce the hydroperoxide. Other processes have been proposed based on cyclohexane where aniline is the final coproduct, or on cumene (qv) where a-methyl styrene is the final coproduct. [Pg.138]

After epoxidation a distillation is performed to remove the propylene, propylene oxide, and a portion of the TBHP and TBA overhead. The bottoms of the distillation contains TBA, TBHP, some impurities such as formic and acetic acid, and the catalyst residue. Concentration of this catalyst residue for recycle or disposal is accompHshed by evaporation of the majority of the TBA and other organics (141,143,144), addition of various compounds to yield a metal precipitate that is filtered from the organics (145—148), or Hquid extraction with water (149). Low (<500 ppm) levels of soluble catalyst can be removed by adsorption on soHd magnesium siUcate (150). The recovered catalyst can be treated for recycle to the epoxidation reaction (151). [Pg.139]

Table 4. Solvents for Purification of Propylene Oxide From Epoxidation Using fe/t-Butyl Hydroperoxide... Table 4. Solvents for Purification of Propylene Oxide From Epoxidation Using fe/t-Butyl Hydroperoxide...
After epoxidation, propylene oxide, excess propylene, and propane are distilled overhead. Propane is purged from the process propylene is recycled to the epoxidation reactor. The bottoms Hquid is treated with a base, such as sodium hydroxide, to neutralize the acids. Acids in this stream cause dehydration of the 1-phenylethanol to styrene. The styrene readily polymerizes under these conditions (177—179). Neutralization, along with water washing, allows phase separation such that the salts and molybdenum catalyst remain in the aqueous phase (179). Dissolved organics in the aqueous phase ate further recovered by treatment with sulfuric acid and phase separation. The organic phase is then distilled to recover 1-phenylethanol overhead. The heavy bottoms are burned for fuel (180,181). [Pg.140]

Cmde propylene oxide separated from the epoxidation reactor effluent is further purified by a series of conventional and extractive distillations to reduce the content of aldehydes, ethylbenzene, water, and acetone (182,183). [Pg.140]

Although this process has not been commercialized, Daicel operated a 12,000-t/yr propylene oxide plant based on a peracetic acid [79-21-0] process during the 1970s. The Daicel process involved metal ion-catalyzed air oxidation of acetaldehyde in ethyl acetate solvent resulting in a 30% peracetic acid solution in ethyl acetate. Epoxidation of propylene followed by purification gives propylene oxide and acetic acid as products (197). As of this writing (ca 1995), this process is not in operation. [Pg.141]

Selectivity of propylene oxide from propylene has been reported as high as 97% (222). Use of a gas cathode where oxygen is the gas, reduces required voltage and eliminates the formation of hydrogen (223). Addition of carbonate and bicarbonate salts to the electrolyte enhances ceU performance and product selectivity (224). Reference 225 shows that use of alternating current results in reduced current efficiencies, especiaHy as the frequency is increased. Electrochemical epoxidation of propylene is also accompHshed by using anolyte-containing silver—pyridine complexes (226) or thallium acetate complexes (227,228). [Pg.141]

PO—SM Coproduction. The copioduction of propylene oxide and styrene (40—49) includes three reaction steps (/) oxidation of ethylbenzene to ethylbenzene hydroperoxide, (2) epoxidation of ethylbenzene hydroperoxide with propylene to form a-phenylethanol and propylene oxide, and (3) dehydration of a-phenylethanol to styrene. [Pg.484]

The oxidation step is similar to the oxidation of cumene to cumene hydroperoxide that was developed earlier and is widely used in the production of phenol and acetone. It is carried out with air bubbling through the Hquid reaction mixture in a series of reactors with decreasing temperatures from 150 to 130°C, approximately. The epoxidation of ethylbenzene hydroperoxide to a-phenylethanol and propylene oxide is the key development in the process. [Pg.484]

Reaction of olefin oxides (epoxides) to produce poly(oxyalkylene) ether derivatives is the etherification of polyols of greatest commercial importance. Epoxides used include ethylene oxide, propylene oxide, and epichl orohydrin. The products of oxyalkylation have the same number of hydroxyl groups per mole as the starting polyol. Examples include the poly(oxypropylene) ethers of sorbitol (130) and lactitol (131), usually formed in the presence of an alkaline catalyst such as potassium hydroxide. Reaction of epichl orohydrin and isosorbide leads to the bisglycidyl ether (132). A polysubstituted carboxyethyl ether of mannitol has been obtained by the interaction of mannitol with acrylonitrile followed by hydrolysis of the intermediate cyanoethyl ether (133). [Pg.51]

P-Ghloroalkoxy Titanates. The reaction of TiCl with epoxides, such as ethylene or propylene oxide (qv), gives P-chloroalkyl titanates (8,9). One example is Ti(OCH2CH2Cl)4 [19600-95-5]. The P-chloroalkoxy titanates can be used to biad refractory powders and ia admixture with diethanolamine to impart thixotropy to emulsion paints (10). [Pg.139]

Dichlorides and e2thers are the main by-products in this reaction. Treatment with base produces propylene oxide. Specialty epoxides, eg, butylene oxide, are also produced on an industrial scale by means of HOCl generated from calcium hypochlorite and acetic acid followed by dehydrohalogenation with base. [Pg.467]

Dehydrochlorination to Epoxides. The most useful chemical reaction of chlorohydrins is dehydrochlotination to form epoxides (oxkanes). This reaction was first described by Wurtz in 1859 (12) in which ethylene chlorohydria and propylene chlorohydria were treated with aqueous potassium hydroxide [1310-58-3] to form ethylene oxide and propylene oxide, respectively. For many years both of these epoxides were produced industrially by the dehydrochlotination reaction. In the past 40 years, the ethylene oxide process based on chlorohydria has been replaced by the dkect oxidation of ethylene over silver catalysts. However, such epoxides as propylene oxide (qv) and epichl orohydrin are stiU manufactured by processes that involve chlorohydria intermediates. [Pg.72]

For many years ethylene chlorohydrin was manufactured on a large iadustrial scale as a precursor to ethylene oxide, but this process has been almost completely displaced by the direct oxidation of ethylene to ethylene oxide over silver catalysts. However, siace other commercially important epoxides such as propylene oxide and epichlorohydrin cannot be made by direct oxidation of the parent olefin, chlorohydrin iatermediates are stiU important ia the manufacture of these products. [Pg.73]

The most important chemical reaction of chi orohydrin s is dehydrochloriaation to produce epoxides. In the case of propylene oxide. The Dow Chemical Company is the only manufacturer ia the United States that still uses the chlorohydrin technology. In 1990 the U.S. propylene oxide production capacity was hsted as 1.43 x 10 t/yr, shared almost equally by Dow and Arco Chemical Co., which uses a process based on hydroperoxide iatermediates (69,70). More recentiy, Dow Europe SA, aimounced a decision to expand its propylene oxide capacity by 160,000 metric tons per year at the Stade, Germany site. This represents about a 40% iacrease over the current capacity (71). [Pg.75]

Uses of Ghlorohydrins From a volume standpoint almost all of the chlorohydrins produced are immediately converted into epoxides such as propylene oxide and epicblorobydrin. The small quantity of various chlorohydrins sold in the merchant market are used in specialty appHcations. [Pg.76]

All lene Oxides and Aziridines. Alkyleneamines react readily with epoxides, such as ethylene oxide [75-21-8] (EO) or propylene oxide [75-56-9] (PO), to form mixtures of hydroxyalkyl derivatives. Product distribution is controlled by the amine to epoxide mole ratio. If EDA, which has four reactive amine hydrogens, reacts at an EDA to EO mole ratio which is greater than 1 4, a mixture of mono-, di-, tri,-, and tetrahydroxyethyl derivatives of EDA are formed. A 10 1 EDA EO feed mole ratio gives predominandy 2-hydroxyethylethylenediamine [111-41-1], the remainder is a mixture of bis-(2-hydroxyethyl)ethylenediamines (7). If the reactive NH to epoxide feed mole ratio is less than one and, additionally, a strong basic catalyst is used, then oxyalkyl derivatives, like those shown for EDA and excess PO result (8,9). [Pg.41]

In 1957, it was discovered that organometaUic catalysts gave high mol wt polymers from epoxides (3). The commercially important, largely amorphous polyether elastomers developed as a result of this early work are polyepichlorohydrin (ECH) (4,5), ECH—ethylene oxide (EO) copolymer (6), ECH—aUyl glycidyl ether (AGE) copolymer (7,8), ECH—EO—AGE terpolymer (8), ECH—propylene oxide (PO)—AGE terpolymer (8,9), and PO—AGE copolymer (10,11). The American Society for Testing and Materials (ASTM) has designated these polymers as follows ... [Pg.553]

Crystallinity is low the pendent allyl group contributes to the amorphous state of these polymers. Propylene oxide homopolymer itself has not been developed commercially because it cannot be cross-baked by current methods (18). The copolymerization of PO with unsaturated epoxide monomers gives vulcanizable products (19,20). In ECH—PO—AGE, poly(ptopylene oxide- o-epichlorohydrin- o-abyl glycidyl ether) [25213-15-4] (5), and PO—AGE, poly(propylene oxide-i o-abyl glycidyl ether) [25104-27-2] (6), the molar composition of PO ranges from approximately 65 to 90%. [Pg.554]

Ethylene oxide (qv), propylene oxide (qv), butylene oxide, and other epoxides react with ethanol to give a variety of Uquid, viscous, semiwax, and soUd products. These products are used ia the coatings iadustry as solvents, and as paints, antioxidants, corrosion inhibitors, and special-purpose polymers. Recent concerns about the health effects of ethanol containing glycol ethers have led to the decline in the production of these compounds. [Pg.415]


See other pages where Propylene oxide epoxidation is mentioned: [Pg.248]    [Pg.248]    [Pg.366]    [Pg.227]    [Pg.245]    [Pg.348]    [Pg.355]    [Pg.134]    [Pg.134]    [Pg.136]    [Pg.137]    [Pg.137]    [Pg.137]    [Pg.140]    [Pg.141]   
See also in sourсe #XX -- [ Pg.48 ]




SEARCH



Epoxidation oxidant

Epoxidation propylene

Epoxide oxidation

Epoxide propylene oxide

Epoxide propylene oxide

Epoxide propylene oxide treatment

Epoxides oxidation

Hydrogen peroxide olefin epoxidation, propylene oxide

Olefin epoxidation propylene oxide synthesis

Propylene oxide

Propylene oxide oxidation

© 2024 chempedia.info