Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions importance

The most abundant compound on our planet is water at the liquid state. Because of its diffusion and its solvating properties, a large number of chemical reactions, important in life and in industrial processes, take place in aqueous solution. [Pg.179]

Reversible Reactions Many chemical reactions important in the water environment are reversible. When the reaction of interest is far from equilibrium, the concentration of the product is small, and the rate of the back reaction is low relative to the rate of the forward reaction. Thus, far from equilibrium the back reaction can be ignored, and the reaction can be modeled as an irreversible process. As equilibrium is approached, however, the rate of the back reaction becomes significant and can no longer be ignored. [Pg.68]

Figure 4. Wheel of Chemical Reactions Important to Flavor Formation (23)... Figure 4. Wheel of Chemical Reactions Important to Flavor Formation (23)...
Finally, extraction of the important reactive species can be executed in the opposite direction, from organic phase to water. This is called inverse phase-transfer catalysis. Catalysts for such processes are mostly cyclodextrins or modified derivatives thereof. Relatively few applications of this type of PTC have been published. Whereas the present section is concerned only with the organic phase as the location of the proper chemical reaction, important contributions of inverse PTC toward organometallic catalysis are detailed in Section 4.6.2. [Pg.273]

For many fields of chemistry, lasers have become indispensable tools [1365-1370]. They are employed in analytical chemistry for the ultrasensitive detection of small concentrations of pollutants, trace elements, or short-lived intermediate species in chemical reactions. Important analytical applications are represented by measurements of the internal-state distribution of reaction products with LIF (Sect. 1.3) and spectroscopic investigations of collision-induced energy-transfer processes (Sects. 8.3-8.6). These techniques allow a deeper insight into reaction paths of inelastic or reactive collisions, and their dependence on the interaction potential and the initial energy of the reactants. [Pg.589]

The beginnings of the study of chemical kinetics as we know it today were in the nineteenth century, and consisted primarily of empirical measurements of rates of chemical change, the rates at which reactants are transformed into reaction products. The transformation of a reactant into a final product is known as an overall reaction, or stoichiometric reaction. Research on the kinetics of overall reactions has served to characterize chemical reactions important to broad areas of science, and to lay down the basic principles of the field. [Pg.2]

While the form of the GVB wavefunction is appropriate for describing chemical reactions, important many-body effects are neglected in this simple orbital wavefunction. To obtain the needed accuracy effective Cl methods have been and are continuing to be developed. The Cl wavefunctions incorporate to varying degrees the many-body effects omitted in the GVB wavefunction. One of these methods, the Polarization Cl (POL-CI) method,has been found to provide a useful description of the energetics of a wide range of chemical reactions. The POL-CI method is closely related to the first-... [Pg.331]

All life on the Earth depends on photosynthesis [1-3] which is a photochemical process in green plants and in some bacteria that has a very high quantum yield unusual for visible light energy transformation into organic chemical reactions. Important information about photosynthetic pigments has been obtained in studies of their luminescence, which is quite specific in comparison with typical organic dyes. [Pg.3]

Although a separation of electronic and nuclear motion provides an important simplification and appealing qualitative model for chemistry, the electronic Sclirodinger equation is still fomiidable. Efforts to solve it approximately and apply these solutions to the study of spectroscopy, stmcture and chemical reactions fonn the subject of what is usually called electronic structure theory or quantum chemistry. The starting point for most calculations and the foundation of molecular orbital theory is the independent-particle approximation. [Pg.31]

The importance of surface science is most often exliibited in studies of adsorption on surfaces, especially in regards to teclmological applications. Adsorption is the first step in any surface chemical reaction or film-growdi process. The mechanisms of adsorption and the properties of adsorbate-covered surfaces are discussed in section Al.7.3. [Pg.283]

Wlien a surface is exposed to a gas, the molecules can adsorb, or stick, to the surface. Adsorption is an extremely important process, as it is the first step in any surface chemical reaction. Some of die aspects of adsorption that surface science is concerned with include the mechanisms and kinetics of adsorption, the atomic bonding sites of adsorbates and the chemical reactions that occur with adsorbed molecules. [Pg.293]

This interface is critically important in many applications, as well as in biological systems. For example, the movement of pollutants tln-ough the enviromnent involves a series of chemical reactions of aqueous groundwater solutions with mineral surfaces. Although the liquid-solid interface has been studied for many years, it is only recently that the tools have been developed for interrogating this interface at the atomic level. This interface is particularly complex, as the interactions of ions dissolved in solution with a surface are affected not only by the surface structure, but also by the solution chemistry and by the effects of the electrical double layer [31]. It has been found, for example, that some surface reconstructions present in UHV persist under solution, while others do not. [Pg.314]

Conservation laws at a microscopic level of molecular interactions play an important role. In particular, energy as a conserved variable plays a central role in statistical mechanics. Another important concept for equilibrium systems is the law of detailed balance. Molecular motion can be viewed as a sequence of collisions, each of which is akin to a reaction. Most often it is the momentum, energy and angrilar momentum of each of the constituents that is changed during a collision if the molecular structure is altered, one has a chemical reaction. The law of detailed balance implies that, in equilibrium, the number of each reaction in the forward direction is the same as that in the reverse direction i.e. each microscopic reaction is in equilibrium. This is a consequence of the time reversal syimnetry of mechanics. [Pg.378]

General first-order kinetics also play an important role for the so-called local eigenvalue analysis of more complicated reaction mechanisms, which are usually described by nonlinear systems of differential equations. Linearization leads to effective general first-order kinetics whose analysis reveals infomiation on the time scales of chemical reactions, species in steady states (quasi-stationarity), or partial equilibria (quasi-equilibrium) [M, and ]. [Pg.791]

As it has appeared in recent years that many hmdamental aspects of elementary chemical reactions in solution can be understood on the basis of the dependence of reaction rate coefficients on solvent density [2, 3, 4 and 5], increasing attention is paid to reaction kinetics in the gas-to-liquid transition range and supercritical fluids under varying pressure. In this way, the essential differences between the regime of binary collisions in the low-pressure gas phase and tliat of a dense enviromnent with typical many-body interactions become apparent. An extremely useful approach in this respect is the investigation of rate coefficients, reaction yields and concentration-time profiles of some typical model reactions over as wide a pressure range as possible, which pemiits the continuous and well controlled variation of the physical properties of the solvent. Among these the most important are density, polarity and viscosity in a contimiiim description or collision frequency. [Pg.831]

In this chapter many of the basic elements of condensed phase chemical reactions have been outlined. Clearly, the material presented here represents just an overview of the most important features of the problem. There is an extensive literature on all of the issues described herein and, more importantly, there is still much work to be done before a complete understanding of the effects of condensed phase enviromnents on chemical reactions can be achieved. The theorist and experimentalist alike can therefore look forward to many more years of exciting and challenging research in this important area of physical chemistry. [Pg.895]

The probability matrix plays an important role in many processes in chemical physics. For chemical reactions, the probability of reaction is often limited by tunnelling tlnough a barrier, or by the fonnation of metastable states (resonances) in an intennediate well. Equivalently, the conductivity of a molecular wire is related to the probability of transmission of conduction electrons tlttough the junction region between the wire and the electrodes to which the wire is attached. [Pg.964]

In this chapter we shall first outline the basic concepts of the various mechanisms for energy redistribution, followed by a very brief overview of collisional intennoleciilar energy transfer in chemical reaction systems. The main part of this chapter deals with true intramolecular energy transfer in polyatomic molecules, which is a topic of particular current importance. Stress is placed on basic ideas and concepts. It is not the aim of this chapter to review in detail the vast literature on this topic we refer to some of the key reviews and books [U, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, and 32] and the literature cited therein. These cover a variety of aspects of tire topic and fiirther, more detailed references will be given tliroiighoiit this review. We should mention here the energy transfer processes, which are of fiindamental importance but are beyond the scope of this review, such as electronic energy transfer by mechanisms of the Forster type [33, 34] and related processes. [Pg.1046]

Vibrational motion is thus an important primary step in a general reaction mechanism and detailed investigation of this motion is of utmost relevance for our understanding of the dynamics of chemical reactions. In classical mechanics, vibrational motion is described by the time evolution and l t) of general internal position and momentum coordinates. These time dependent fiinctions are solutions of the classical equations of motion, e.g. Newton s equations for given initial conditions and I Iq) = Pq. [Pg.1056]

The most important themiodynamic property of a substance is the standard Gibbs energy of fomiation as a fimetion of temperature as this infomiation allows equilibrium constants for chemical reactions to be calculated. The standard Gibbs energy of fomiation A G° at 298.15 K can be derived from the enthalpy of fomiation AfT° at 298.15 K and the standard entropy AS° at 298.15 K from... [Pg.1904]

The key to experimental gas-phase kinetics arises from the measurement of time, concentration, and temperature. Chemical kinetics is closely linked to time-dependent observation of concentration or amount of substance. Temperature is the most important single statistical parameter influencing the rates of chemical reactions (see chapter A3.4 for definitions and fiindamentals). [Pg.2114]


See other pages where Chemical reactions importance is mentioned: [Pg.2039]    [Pg.136]    [Pg.55]    [Pg.118]    [Pg.2039]    [Pg.136]    [Pg.55]    [Pg.118]    [Pg.181]    [Pg.526]    [Pg.584]    [Pg.739]    [Pg.31]    [Pg.54]    [Pg.664]    [Pg.816]    [Pg.870]    [Pg.871]    [Pg.883]    [Pg.887]    [Pg.895]    [Pg.899]    [Pg.1045]    [Pg.1045]    [Pg.1762]    [Pg.1940]    [Pg.2083]    [Pg.2115]    [Pg.2115]    [Pg.2333]   
See also in sourсe #XX -- [ Pg.89 ]




SEARCH



Reactions important

© 2024 chempedia.info