Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Products rounding

The best products have smooth, natural curves and drawn sections that are spherical or nearly so in shape. Their walls will be more uniform, they will be more rigid, their surfaces will be less apt to show tool marks, and their tooling and molds will be lower in cost. Notches or square holes should be avoided when punching formed products. Round holes are preferred to oval ones for minimizing stress buildup. [Pg.199]

As a first step in the direction outlined here some manufacturers and BAM last year discussed the problems and the possible procedures of such a system of quality assurance. As a result of this meeting round robin tests for the harmonization of the measurements of film system parameters and a possible procedure of surveillance of the quality of film systems were proposed. Closely related to these the BAM offers to perform the classification of film systems. But as during the production of films variations of the properties of the different batches cannot be avoided, the results of measurements of films of a single batch will be restricted to this charge, while only the measurements and mean of several batches of a film type will give representative values of its properties. This fact is taken into account already in section 4 of the standard EN 584-1 which can be interpreted as a kind of continuous surveillance. In accordance with this standard a film system caimot be certified on the base of measurements of a single emulsion only. [Pg.553]

A first comprehensive round robin test described in 4.1 which is open to all interested parties will be followed periodically by round robin tests in a reduced extent to ensure the further harmonisation of measurement procedures. The check of measurering equipments and procedures is an inalienable requirement for the further steps for providing the users with constant film quality. Together with sample tests performed by BAM as indicated in section 4.2 and and the production control by the manufacturer it will be possible to survey the film systems whether they meet the requirements of one of the film classes of EN 584-1. [Pg.553]

The detection sensitivity of radiography is related among others to the properties and quality of industrial x-ray film systems. Changes of the products, variations due to different emulsions and combinations of products of different manufacturers can influence the decisive properties of film systems as classified in EN 584-1.To ensure the quality of industrial x-ray film systems a system for quality assurance open to all interested parties is proposed which is based on periodical round robin tests and quality controls of the manufacturer or an independent third party institution. [Pg.555]

We have seen (Section I) that there are two types of loops that are phase inverting upon completing a round hip an i one and an ip one. A schematic representation of these loops is shown in Figure 10. The other two options, p and i p loops do not contain a conical intersection. Let us assume that A is the reactant, B the desired product, and C the third anchor. In an ip loop, any one of the three reaction may be the phase-inverting one, including the B C one. Thus, the A B reaction may be phase preserving, and still B may be attainable by a photochemical reaction. This is in apparent contradiction with predictions based on the Woodward-Hoffmann rules (see Section Vni). The different options are summarized in Figure 11. [Pg.347]

The oxime is freely soluble in water and in most organic liquids. Recrystallise the crude dry product from a minimum of 60-80 petrol or (less suitably) cyclohexane for this purpose first determine approximately, by means of a small-scale test-tube experiment, the minimum proportion of the hot solvent required to dissolve the oxime from about 0-5 g. of the crude material. Then place the bulk of the crude product in a small (100 ml.) round-bottomed or conical flask fitted with a reflux water-condenser, add the required amount of the solvent and boil the mixture on a water-bath. Then turn out the gas, and quickly filter the hot mixture through a fluted filter-paper into a conical flask the sodium chloride remains on the filter, whilst the filtrate on cooling in ice-water deposits the acetoxime as colourless crystals. These, when filtered anddried (either by pressing between drying-paper or by placing in an atmospheric desiccator) have m.p. 60 . Acetoxime sublimes rather readily when exposed to the air, and rapidly when warmed or when placed in a vacuum. Hence the necessity for an atmospheric desiccator for drying purposes. [Pg.94]

Prepare a mixture of 30 ml, of aniline, 8 g. of o-chloro-benzoic acid, 8 g. of anhydrous potassium carbonate and 0 4 g. of copper oxide in a 500 ml. round-bottomed flask fitted with an air-condenser, and then boil the mixture under reflux for 1 5 hours the mixture tends to foam during the earlier part of the heating owing to the evolution of carbon dioxide, and hence the large flask is used. When the heating has been completed, fit the flask with a steam-distillation head, and stcam-distil the crude product until all the excess of aniline has been removed. The residual solution now contains the potassium. V-phenylanthrani-late add ca. 2 g. of animal charcoal to this solution, boil for about 5 minutes, and filter hot. Add dilute hydrochloric acid (1 1 by volume) to the filtrate until no further precipitation occurs, and then cool in ice-water with stirring. Filter otT the. V-phcnylanthranilic acid at the pump, wash with water, drain and dry. Yield, 9-9 5 g. I he acid may be recrystallised from aqueous ethanol, or methylated spirit, with addition of charcoal if necessary, and is obtained as colourless crystals, m.p. 185-186°. [Pg.217]

The reaction is carried out in a 2-litre long-necked round-bottomed flask, to which is fitted an efficient reflux water-condenser, capable of condensing a sudden rush of vapour without choking. For this purpose, a long bulb-condenser, similar to that shown in Fig. 3(A) (p. 9) is best, but the inner tube must be of wide bore (at least 12 mm.). Alternatively, an air-condenser of wide bore may be used, an.d a short double-surface water-condenser fitted to its top. A steam-distillation fitting for the flask should also be prepared in advance, so that the crude product can subsequently be steam-distilled directly from the flask. The glj cerol used in the preparation must be anhydrous, and should therefore be dehydrated by the method described on p. 113. [Pg.298]

In a 1500 ml. round-bottomed flask, carrying a reflux condenser, place 100 g. of pure cydohexanol, 250 ml. of concentrated hydrochloric acid and 80 g. of anhydrous calcium chloride heat the mixture on a boiling water bath for 10 hours with occasional shaking (1). Some hydrogen chloride is evolved, consequently the preparation should be conducted in the fume cupboard. Separate the upper layer from the cold reaction product, wash it successively with saturated salt solution, saturated sodium bicarbonate solution, saturated salt solution, and dry the crude cycZohexyl chloride with excess of anhydrous calcium chloride for at least 24 hours. Distil from a 150 ml. Claisen flask with fractionating side arm, and collect the pure product at 141-5-142-5°. The yield is 90 g. [Pg.275]

If the iodide is deeply coloured, it may be decolourised with a little sodium bisulphite. A perfecUy colourless product can be obtained by distilling in the dark or in dilfusod light from a little silver powder. The iodide should be preserved in a bottle containing a short coil of copper wire made by wrapping coppor wire round a glass rod or tube. [Pg.287]

Fit a 750 ml. round-bottomed flask with a fractionating column attached to a condenser set for downward distillation. Place 500 g. of diacetone alcohol (the crude product is quite satisfactory), 01 g. of iodine and a few fragments of porous porcelain in the flask. Distil slowly. with a small free flame (best in an air bath) and collect the following fractions (a) 56-80° (acetone and a little mesityl oxide) (6) 80-126° (two layers, water and mesityl oxide) and (c) 126-131° (mesityl oxide). Whilst fraction (c) is distilling, separate the water from fraction (6), dry with anhydrous potassium carbonate or anhydrous magnesium sulphate, and fractionate from a small flask collect the mesityl oxide at 126-131°. The yield is about 400 g. [Pg.353]

To obtain a maximum yield of the acid it is necessary to hydrolyse the by-product, iaoamyl iaovalerate this is most economically effected with methyl alcoholic sodium hydroxide. Place a mixture of 20 g. of sodium hydroxide pellets, 25 ml. of water and 225 ml. of methyl alcohol in a 500 ml. round-bottomed flask fitted with a reflux (double surface) condenser, warm until the sodium hydroxide dissolves, add the ester layer and reflux the mixture for a period of 15 minutes. Rearrange the flask for distillation (Fig. II, 13, 3) and distil off the methyl alcohol until the residue becomes pasty. Then add about 200 ml. of water and continue the distfllation until the temperature reaches 98-100°. Pour the residue in the flask, consisting of an aqueous solution of sodium iaovalerate, into a 600 ml. beaker and add sufficient water to dissolve any solid which separates. Add slowly, with stirring, a solution of 15 ml. of concentrated sulphuric acid in 50 ml. of water, and extract the hberated acid with 25 ml. of carbon tetrachloride. Combine this extract with extract (A), dry with a httle anhydrous magnesium or calcium sulphate, and distil off the carbon tetrachloride (Fig. II, 13, 4 150 ml. distiUing or Claisen flask), and then distil the residue. Collect the wovaleric acid 172-176°. The yield is 56 g. [Pg.356]

Place 50 g. of ammonium thiocyanate in a small round-bottomed flask and immerse a thermometer in the substance. Heat in an oil bath until the temperature rises to 170° and maintain it at this temperature for 1 hour. Allow the melt to cool and extract it with 60-70 ml. of hot water. Filter the solution and allow to cool when crude thiourea separates the unchanged ammonium thiocyanate remains in the solution. Filter ofiF the crude product and recrystallise it from a little hot water. The yield of thiourea, m.p. 172°, is 8 g. [Pg.443]

Dissolve 57 g. of dry malonic acid in 92 5 ml. of dry P3rridine contained in a 500 ml. round-bottomed flask, cool the solution in ice, and add 57 g. (70 ml.) of freshly distilled n-heptaldehyde (oenanthol) with stirring or vigorous shaking. After a part of the aldehyde has been added, the mixture rapidly seta to a mass of crystals. Insert a cotton wool (or calcium chloride) tube into the mouth of the flask and allow the mixture to stand at room temperature for 60 hours with frequent shaking. Finally, warm the mixture on a water bath until the evolution of carbon dioxide ceases (about 8 hours) and then pour into an equal volume of water. Separate the oily layer and shake it with 150 ml. of 25 per cent hydrochloric acid to remove pyridine. Dissolve the product in benzene, wash with water, dry with anhydrous magnesium sulphate, and distil under reduced pressure. Collect the ap-nonenoic acid at 130-13272 mm. The yield is 62 g. [Pg.466]

Method 2. In a 500 ml. round-bottomed flask, equipped with a reflux condenser, place 20 5 g. (20 ml.) of anUine, 21 5 g. (20 ml.) of acetic anhydride, 21 g. (20 ml.) of glacial acetic acid, and 01 g. of zinc dust (1), Boil the mixture gently for 30 minutes, and then pour the hot Uquid in a thin stream into a 1 Utre beaker containing 500 ml. of cold water whilst stirring continually. When cold (it is preferable to cool in ice), filter the crude product at the pump, wash with a Uttle cold water, drain well and dry upon filter paper in the air. The yield of acetaniUde, m.p. 113°, is 30 g. It may be recrystaUised as in Method 1 aflFording 21 g, of pure acetaniUde, m.p. 114°. [Pg.577]

In a 1 litre round-bottomed flask provided with an efficient double surface condenser, place 40 g. (39 ml.) of aniline, 50 g. (40 ml.) of carbon sulphide CAUTION inflammable) (1), and 50 g. (63-5 ml.) of absolute ethyl alcohol (2). Set up the apparatus in the fume cupboard or attach an absorption device to the top of the condenser (see Fig. 11, 8, 1) to absorb the hydrogen sulphide which is evolved. Heat upon an electrically-heated water bath or upon a steam bath for 8 hours or until the contents of the flask sohdify. When the reaction is complete, arrange the condenser for downward distillation (Fig. 11, 13, 3), and remove the excess of carbon disulphide and alcohol (CA UTION inflammable there must be no flame near the receiver). Shake the residue in the flask with excess of dilute hydrochloric acid (1 10) to remove any aniline present, filter at the pump, wash with water, and drain well. Dry in the steam oven. The yield of crude product, which is quite satisfactory for the preparation of phenyl iao-thiocyanute (Section IV.95), is 40-45 g. Recrystalhse the crude thiocarbanihde by dissolving it, under reflux, in boiling rectified spirit (filter through a hot water funnel if the solution is not clear), and add hot water until the solution just becomes cloudy and allow to cool. Pure sj/m.-diphenylthiourea separates in colourless needles, m.p, 154°,... [Pg.642]

Into a 1-litre beaker, provided with a mechanical stirrer, place 36 - 8 g. (36 ml.) of aniline, 50 g. of sodium bicarbonate and 350 ml. of water cool to 12-15° by the addition of a little crushed ice. Stir the mixture, and introduce 85 g. of powdered, resublimed iodine in portions of 5-6 g, at intervals of 2-3 minutes so that all the iodine is added during 30 minutes. Continue stirring for 20-30 minutes, by which time the colour of the free iodine in the solution has practically disappeared and the reaction is complete. Filter the crude p-iodoaniline with suction on a Buchner funnel, drain as completely as possible, and dry it in the air. Save the filtrate for the recovery of the iodine (1). Place the crude product in a 750 ml. round-bottomed flask fitted with a reflux double surface condenser add 325 ml. of light petroleum, b.p. 60-80°, and heat in a water bath maintained at 75-80°. Shake the flask frequently and after about 15 minutes, slowly decant the clear hot solution into a beaker set in a freezing mixture of ice and salt, and stir constantly. The p-iodoaniline crystallises almost immediately in almost colourless needles filter and dry the crystals in the air. Return the filtrate to the flask for use in a second extraction as before (2). The yield of p-iodoaniline, m.p. 62-63°, is 60 g. [Pg.647]

Dihydroxyacetophenone. Finely powder a mixture of 40 g. of dry hydroquinone diacetate (1) and 87 g. of anhydrous aluminium chloride in a glass mortar and introduce it into a 500 ml. round-bottomed flask, fitted with an air condenser protected by a calcium chloride tube and connected to a gas absorption trap (Fig. II, 8, 1). Immerse the flask in an oil bath and heat slowly so that the temperature reaches 110-120° at the end of about 30 minutes the evolution of hydrogen chloride then hegins. Raise the temperature slowly to 160-165° and maintain this temperature for 3 hours. Remove the flask from the oil bath and allow to cool. Add 280 g. of crushed ice followed by 20 ml. of concentrated hydrochloric acid in order to decompose the excess of aluminium chloride. Filter the resulting solid with suction and wash it with two 80 ml. portions of cold water. Recrystallise the crude product from 200 ml. of 95 per cent, ethanol. The 3 ield of pure 2 5-dihydroxyacetophenone, m.p. 202-203°, is 23 g. [Pg.677]

In a 1 htre round bottomed flask equipped with a reflux condenser place a solution of 62 -5 g. of anhydroas sodium carbonate in 500 ml. of water and add 50 g. of commercial 2 4-dinitro-l-chlorobenzene. Reflux the mixture for 24 hours or until the oil passes into solution. Acidify the yellow solution with hj drochloric acid and, when cold, filter the crystaUine dinitrophenol which has separated. Dry the product upon filter paper in the air. The yield is 46 g. If the m.p, differs appreciably from 114°, recrystallisc from alcohol or from water. [Pg.678]


See other pages where Products rounding is mentioned: [Pg.50]    [Pg.240]    [Pg.101]    [Pg.11]    [Pg.200]    [Pg.197]    [Pg.50]    [Pg.240]    [Pg.101]    [Pg.11]    [Pg.200]    [Pg.197]    [Pg.274]    [Pg.450]    [Pg.917]    [Pg.78]    [Pg.106]    [Pg.116]    [Pg.141]    [Pg.273]    [Pg.166]    [Pg.169]    [Pg.191]    [Pg.239]    [Pg.251]    [Pg.257]    [Pg.281]    [Pg.415]    [Pg.525]    [Pg.549]    [Pg.569]    [Pg.586]    [Pg.623]    [Pg.631]    [Pg.646]    [Pg.670]    [Pg.698]    [Pg.712]   
See also in sourсe #XX -- [ Pg.134 , Pg.135 , Pg.136 ]




SEARCH



Rounding

Roundness

© 2024 chempedia.info