Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process synthesis methyl acetate production

F. Methyl acetate production. Methanol made from synthesis gas is reacted with by-product acetic acid from cellulose esters manufacturing to form methyl acetate in an Eastman patented process (U.S. Patent 4,435,595). The principal component of this process is a reactor-distillation column in which acetic acid and methanol flow counter-currently, reacting and flashing at each stage. The acetic acid serves the dual functions of reactant and extractive agent to remove water and methanol from their methyl acetate azeotropes. [Pg.592]

By selection of appropriate operating conditions, the proportion of coproduced methanol and dimethyl ether can be varied over a wide range. The process is attractive as a method to enhance production of Hquid fuel from CO-rich synthesis gas. Dimethyl ether potentially can be used as a starting material for oxygenated hydrocarbons such as methyl acetate and higher ethers suitable for use in reformulated gasoline. Also, dimethyl ether is an intermediate in the Mobil MTG process for production of gasoline from methanol. [Pg.165]

Eastman Chemical Company has operated a coal-to-methanol plant in Kingsport, Tennessee, since 1983. Two Texaco gasifiers (one is a backup) process 34 Mg/h (37 US ton/h) of coal to synthesis gas. The synthesis gas is converted to methanol by use of ICl methanol technology. Methanol is an intermediate for producing methyl acetate and acetic acid. The plant produces about 225 Gg/a (250,000 US ton/a) of acetic anhydride. As part of the DOE Clean Coal Technology Program, Air Products and Cnemicals, Inc., and Eastman Chemic Company are constructing a 9.8-Mg/h (260-US ton/d) slurry-phase reactor for the conversion of synthesis gas to methanol and dimethyl... [Pg.2377]

In many applications acetic acid is used as the anhydride and the synthesis of the latter is therefore equally important. In the 1970 s Halcon (now Eastman) and Hoechst (now Celanese) developed a process for the conversion of methyl acetate and carbon monoxide to acetic anhydride. The process has been on stream since 1983 and with an annual production of several 100,000 tons, together with some 10-20% acetic acid. The reaction is carried out under similar conditions as the Monsanto process, and also uses methyl iodide as the "activator" for the methyl group. [Pg.116]

The direct carbonylation of methanol yielding acetic acid, the Monsanto process, represents the best route for acetic acid. Carbonylation of methyl acetate, obtained from methanol and acetic acid, gives acetic anhydride, a technology commercialized by Tennessee Eastman (22). It is noteworthy that this process is based on coal derived synthesis gas to give as the final product cellulose acetate. A combination of Monsanto and Tennessee Eastman technology opens the door for the combined synthesis of acetic acid and acetic anhydride. [Pg.8]

So the synthesis could be done in one step by making the anion of methyl acetate and reacting it with bromocyclohexane. The polarities of the reaction partners match nicely, but the problem is that alkylations of secondary bromides with enolates often give poor yields. The enolate is a strong base, which promotes elimination in the secondary bromide rather than giving the substitution product needed in the synthesis. Thus elimination from cyclohexyl bromide to cyclohexene would be a major process if the reaction were attempted. While the retrosynthetic step seems reasonable, the synthetic step has known difficulties. It is important to work backward in the retrosynthetic analysis and then check each forward step for validity. [Pg.297]

Mankind has produced acetic acid for many thousand years but the traditional and green fermentation methods cannot provide the large amounts of acetic acid that are required by today s society. As early as 1960 a 100% atom efficient cobalt-catalyzed industrial synthesis of acetic acid was introduced by BASF, shortly afterwards followed by the Monsanto rhodium-catalyzed low-pressure acetic acid process (Scheme 5.36) the name explains one of the advantages of the rhodium-catalyzed process over the cobalt-catalyzed one [61, 67]. These processes are rather similar and consist of two catalytic cycles. An activation of methanol as methyl iodide, which is catalytic, since the HI is recaptured by hydrolysis of acetyl iodide to the final product after its release from the transition metal catalyst, starts the process. The transition metal catalyst reacts with methyl iodide in an oxidative addition, then catalyzes the carbonylation via a migration of the methyl group, the "insertion reaction". Subsequent reductive elimination releases the acetyl iodide. While both processes are, on paper, 100%... [Pg.246]

Consider the following industrial example of a process for the production of methyl acetate, first synthesized in the conventional conceptual process design manner, then modified using evolutionary approaches, and finally resynthesized using the lessons from the hierarchical process synthesis procedure experience. For simplicity here, only identity, amount, and composition differences are resolved (that is, temperature and pressure changers will be ignored). [Pg.20]

There are many examples of the application of CD or RD for esterification.f" Esterification of methanol or ethanol with acetic acid forms methyl acetate or ethyl acetate, respectively. Methyl acetate is important in the manufacture of polyesters and is an important solvent for cellulose while ethyl acetate is used in inks, fragrances, and pharmaceuticals. The manufacture of high-purity methyl acetate is difficult because of the equilibrium limitation and also the formation of azeotropes. The production of methyl acetate by Eastman Chemical Co. was the first commercial application of RD using a homogeneous liquid acid catalyst. Only one RD column and two smaller columns for processing sidestreams are required while in the conventional methyl acetate synthesis, two reactors and eight distillation columns are required. [Pg.2606]

In the 1970s, the oil crisis generated a need for alternative raw materials. Coal and especially natural gas were reconsidered as carbon sources. Synthesis gas, now produced from natural gas, became an alternative feedstock for the production of oxygenated hydrocarbons. For instance, a new process employing organorhodium compounds was developed to produce acetic anhydride from synthesis gas via carbonylation of methyl acetate. [Pg.14]

Production of maleic anhydride by oxidation of / -butane represents one of butane s largest markets. Butane and LPG are also used as feedstocks for ethylene production by thermal cracking. A relatively new use for butane of growing importance is isomerization to isobutane, followed by dehydrogenation to isobutylene for use in MTBE synthesis. Smaller chemical uses include production of acetic acid and by-products. Methyl ethyl ketone (MEK) is the principal by-product, though small amounts of formic, propionic, and butyric acid are also produced. / -Butane is also used as a solvent in Hquid—Hquid extraction of heavy oils in a deasphalting process. [Pg.403]

Methanol is an ideal starting material for the synthesis of many chemicals. It is the most important feedstock for the large-scale commercial production of acetic acid and formaldehyde. Additionally, a variety of other chemicals such as methyl esters, methyl halides and methyl ethers can be produced from it. Tenessee-Eastman s recent pioneering commercialization of a coal-based process for acetic anhydride production illustrates the growing importance of methanol as chemical feedstock. [Pg.155]

An interesting case of interproduct competition is that of the four original lacquer solvents—ethyl alcohol, butyl alcohol, ethyl acetate, and butyl acetate. These were once produced mainly by fermentation processes, but today all are also produced by synthesis from petroleum hydrocarbons. Moreover, in the past 30 years solvents have been developed from petroleum sources which are competing successfully with these materials even though the new compounds are not identical in all properties isopropyl alcohol competes with ethyl alcohol methyl isobutyl carbinol and n-propyl alcohol can replace butyl alcohol methyl ethyl ketone to a large extent supplants ethyl acetate and methyl isobutyl ketone can be substituted for butyl acetate. Thus, petroleum aliphatic chemicals have served both by displacement of source and replacement of end product to supplement and to compete with the fermentation solvents. [Pg.299]


See other pages where Process synthesis methyl acetate production is mentioned: [Pg.134]    [Pg.563]    [Pg.15]    [Pg.252]    [Pg.40]    [Pg.68]    [Pg.34]    [Pg.2132]    [Pg.237]    [Pg.41]    [Pg.47]    [Pg.241]    [Pg.235]    [Pg.168]    [Pg.1797]    [Pg.1803]    [Pg.1810]    [Pg.1821]    [Pg.870]    [Pg.87]    [Pg.187]    [Pg.1220]    [Pg.131]    [Pg.296]    [Pg.436]    [Pg.118]    [Pg.153]    [Pg.555]    [Pg.480]    [Pg.235]   
See also in sourсe #XX -- [ Pg.20 , Pg.21 , Pg.22 , Pg.23 , Pg.24 , Pg.25 , Pg.26 , Pg.27 ]




SEARCH



Acetals methylation

Acetals, synthesis

Acetate production

Acetates methylated

Acetic processing

Acetic synthesis

Methyl acetals

Methyl acetate

Methyl acetate processes

Methyl acetate synthesis

Methyl acetate, production

Methyl production

Process synthesis

Processing synthesis

Synthesis acetate

© 2024 chempedia.info