Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process product separation

In the liquid recycle process product separation from the catalyst solution takes place outside of the reactor and independently of reaction conditions (Frohning et al, 2002). Figure 6.14.3 shows the process scheme. [Pg.725]

Figure 10.3a shows a simplified fiowsheet for the production of isopropyl alcohol by the direct hydration of propylene. Different reactor technologies are available for the process, and separation and recycle systems vary, but Fig. 10.3a is representative. Propylene... [Pg.280]

There are many interacting parameters and possible feedstock—process—product combinations, but all are not feasible from a practical standpoint eg, the separation of small amounts of metals present in biomass and the direct combustion of high moisture content algae are technically possible, but energetically unfavorable. [Pg.15]

Although 4-hydroxybenzaldehyde can be made by the saligenin route, it has been made historically by the Reimer-Tiemann process, which also produces sahcylaldehyde (64). Treatment of phenol with chloroform and aqueous sodium hydroxide results in the formation of benzal chlorides, which are rapidly hydrolyzed by the alkaline medium into aldehydes. Acidification of the phenoxides results in the formation of the final products, sahcylaldehyde and 4-hydroxybenzaldehyde. The ratio of ortho and para isomers is flexible and can be controlled within certain limits. The overall reaction scheme is shown in Figure 1. Product separation is accomphshed by distillation, but this process leads to environmental problems because of the quantities of sodium chloride produced. [Pg.506]

Separation Processes. The product of ore digestion contains the rare earths in the same ratio as that in which they were originally present in the ore, with few exceptions, because of the similarity in chemical properties. The various processes for separating individual rare earth from naturally occurring rare-earth mixtures essentially utilize small differences in acidity resulting from the decrease in ionic radius from lanthanum to lutetium. The acidity differences influence the solubiUties of salts, the hydrolysis of cations, and the formation of complex species so as to allow separation by fractional crystallization, fractional precipitation, ion exchange, and solvent extraction. In addition, the existence of tetravalent and divalent species for cerium and europium, respectively, is useful because the chemical behavior of these ions is markedly different from that of the trivalent species. [Pg.543]

The Coastal process uses steam pyrolysis of isobutane to produce propylene and isobutylene (as weH as other cracked products). It has been suggested that the reaction be carried out at high pressure, >1480 kPa ( 15 atm), to facHitate product separation. This process was commercialized in the late 1960s at Coastal s Corpus Christi refinery. [Pg.368]

These processes are aH characterized by low isobutane conversion to achieve high isobutylene selectivity. The catalytic processes operate at conversions of 45—55% for isobutane. The Coastal process also operates at 45—55% isobutane conversion to minimize the production of light ends. This results in significant raw material recycle rates and imposing product separation sections. [Pg.368]

Dehydrogenation of isobutane to isobutylene is highly endothermic and the reactions are conducted at high temperatures (535—650°C) so the fuel consumption is sizeable. Eor the catalytic processes, the product separation section requires a compressor to facHitate the separation of hydrogen, methane, and other light hydrocarbons from-the paraffinic raw material and the olefinic product. An exceHent overview of butylenes is avaHable (81). [Pg.368]

In the mid-1980s, Ruhrchemie (now Hoechst) converted its oxo capacity to a proprietary water soluble rhodium catalyzed process (27,28), a technology developed jointly with Rhc ne-Poulenc. Product separation in this process is by decantation. Isomer ratios of n- to isobutyraldehyde of about 20 1 are obtained. [Pg.380]

The detection of spectral sensitizing action often depends on amplification methods such as photographic or electrophotographic development or, alternatively, on chemical or biochemical detection of reaction products. Separation of the photosensitization reaction from the detection step or the chemical reaction allows selection of the most effective spectral sensitizers. Prime considerations for spectral sensitizing dyes include the range of wavelengths needed for sensitization and the absolute efficiency of the spectrally sensitized process. Because both sensitization wavelength and efficiency are important, optimum sensitizers vary considerably in their stmctures and properties. [Pg.428]

Product Recovery. Comparison of the electrochemical cell to a chemical reactor shows the electrochemical cell to have two general features that impact product recovery. CeU product is usuaUy Uquid, can be aqueous, and is likely to contain electrolyte. In addition, there is a second product from the counter electrode, even if this is only a gas. Electrolyte conservation and purity are usual requirements. Because product separation from the starting material may be difficult, use of reaction to completion is desirable ceUs would be mn batch or plug flow. The water balance over the whole flow sheet needs to be considered, especiaUy for divided ceUs where membranes transport a number of moles of water per Earaday. At the inception of a proposed electroorganic process, the product recovery and refining should be included in the evaluation to determine tme viabUity. Thus early ceU work needs to be carried out with the preferred electrolyte/solvent and conversion. The economic aspects of product recovery strategies have been discussed (89). Some process flow sheets are also available (61). [Pg.95]

Batch distillation, which is the process of separating a specific quantity (the charge) of a liquid mixture into products, is used extensively in the laboratory and in small production units that may have to serve for many mixtures. When there are N components in the feed, one batch column will suffice where N — 1 simple continuous-distillatiou columns would be required. [Pg.1334]

Dry Scrubbing Diy scruhhing is an umbrella term used to associate several different unit operations and types of hardware that can be used in combinations to accomplish the unit process of dry scrubbing. They all utilize scrubbing, in which mass transfer takes place between the gas phase and an active liquidlike surface, and they all discharge the resulting products separately as a gas and a sohdlike diy product for reuse or disposal. [Pg.1597]

Product separation for main fractionators is also often called black oil separation. Main fractionators are typically used for such operations as preflash separation, atmospheric crude, gas oil crude, vacuum preflash crude, vacuum crude, visbreaking, coking, and fluid catalytic cracking. In all these services the object is to recover clean, boiling range components from a black multicomponent mixture. But main fractionators are also used in hydrocracker downstream processing. This operation has a clean feed. Nevertheless, whenever you hear the term black oil, understand that what is really meant is main fractionator processing. [Pg.242]

All refining operations may be classed as either conversion processes or separation processes. In the former, the feed undergoes a chemical reaction such as cracking, polymerization, or desulfurization. Separation processes take advantage of differences in physical properties to split the feed into two or more different products. Distillation, the most common of all refinery separation processes, uses differences in boiling points to separate hydrocarbon mixtures. [Pg.70]

The primary process for separating the hydrocarbon components of crude oil is fractional distillation i.e. separation according to the boiling points of the components. These separated fractions are processed further by catalytic reformers, cracking units, alkylation units, or cokers which have there own fractional distillation towers for its products. [Pg.286]

Easy product separation and catalyst recycling Lower cost of chemical processes... [Pg.260]

Correlation as illustrated in Norton s Intalox High-Performance Separation Systems Figure 9-21G this text Used by permission of Norton Chemical Process Products Corp., Bull. I-S-I-R. [Pg.331]

Norton Chemical Process Products, Intalox High Performance Separation Systems, Bulletin IHP-1, Norton Chemical Process Products Corporation (1987). [Pg.413]

The three isomers constituting n-hutenes are 1-hutene, cis-2-hutene, and trans-2-hutene. This gas mixture is usually obtained from the olefinic C4 fraction of catalytic cracking and steam cracking processes after separation of isobutene (Chapter 2). The mixture of isomers may be used directly for reactions that are common for the three isomers and produce the same intermediates and hence the same products. Alternatively, the mixture may be separated into two streams, one constituted of 1-butene and the other of cis-and trans-2-butene mixture. Each stream produces specific chemicals. Approximately 70% of 1-butene is used as a comonomer with ethylene to produce linear low-density polyethylene (LLDPE). Another use of 1-butene is for the synthesis of butylene oxide. The rest is used with the 2-butenes to produce other chemicals. n-Butene could also be isomerized to isobutene. ... [Pg.238]

The process of separating the intermediate products from the purified solutions, in the form of solid complex fluoride salts or hydroxides, is also related to the behavior of tantalum and niobium complexes in solutions of different compositions. The precipitation of complex fluoride compounds must be performed under conditions that prevent hydrolysis, whereas the precipitation of hydroxides is intended to be performed along with hydrolysis in order to reduce contamination of the oxide material by fluorine. [Pg.254]

The recovery of the product is described in outline in Figure 95. Essentially the process involves separating the broth and mycelium by filtration, extracting the mycelium with acetone and methylene chloride. Combining these extracts with the broth and re-extracting with methylene chloride. The extract is washed with 2% sodium bicarbonate, evaporated and re-dissolved in methylene chloride. The product is allowed to crystallise from the methylene chloride. [Pg.316]


See other pages where Process product separation is mentioned: [Pg.286]    [Pg.445]    [Pg.144]    [Pg.738]    [Pg.286]    [Pg.445]    [Pg.144]    [Pg.738]    [Pg.50]    [Pg.299]    [Pg.182]    [Pg.22]    [Pg.427]    [Pg.331]    [Pg.201]    [Pg.180]    [Pg.307]    [Pg.19]    [Pg.347]    [Pg.97]    [Pg.1247]    [Pg.1327]    [Pg.1544]    [Pg.334]    [Pg.234]    [Pg.74]    [Pg.272]    [Pg.279]    [Pg.16]    [Pg.181]    [Pg.258]    [Pg.401]    [Pg.27]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



Ammonia, production related separation processes

Entropy production in separation process distillation

Integration of Separate Ethanol and Ethylene Production Processes

Processing separation

Product Processing (Thermal and Mechanical Separation Processes)

Product separation

Production separations

Separation process hydrogen production

Separation processes

Separators production process

Separators production process

© 2024 chempedia.info