Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Preparation suspended

Remove the medium from a cell monolayer and wash the mono-layer with BSS or PBS (Appendix 1) to remove inhibitors (antibodies) which may be present in the medium. Apply the virus preparation suspended in a small volume of BSS or PBS and allow 30-60 min for adsorption. Replace or supplement the salt solution with fresh medium. [Pg.283]

Assay Preparation Suspend about 1 g of sample, accurately weighed, in 10.0 mL of 50% (v/v) ethanol solution. Stir for 30 min using a Teflon-coated stirring bar. Allow the suspension to precipitate, and filter. Evaporate a 1.0-mL aliquot to dryness using reduced pressure (10 mm Hg), and heat at 60°. Redissolve the residue in 1.0 mL of the Mobile Phase. [Pg.324]

These procedures include adjustment of pH and ionic strength of the medium, through the use of a suitable buffering medium and other salts and/or sugars. The prepared suspending medium should then be carefully processed beforehand and with respect to sterilization, filtration, and degasification. [Pg.233]

Preparation. Suspend 11.67 g lecithin and 100 mL polysorbate 80 in 1 liter of hot deionized water boil and stir for thirty (30) minutes. Add 10.1 g Na2HP04, 0.4 g K2HPO4, 1.0 mL Triton X-100, 5.0 g sodium thiosulfate pentahydrate (Na2S203—5H2O), and 10 g Tamol and mix thoroughly. Adjust final pH to 7.8-7.9 with 0.1 N sodium hydroxide or 0.1 N hydrochloric acid. [Pg.352]

Meanwhile, the organic compound can be prepared for analysis whilst the sealed end C (Fig. 72) of the Carius tube has been cooling dow n. For this purpose, thoroughly clean and dry a small tube, which is about 6 cm. long and 8-10 mm. w ide. Weigh it carefully, supporting it on the balance pan either by means of a small stand of aluminium foil, or by a short section of a perforated rubber stopper (Fig. 73 (A) and (B) respectively) alternatively the tube may be placed in a small beaker on the balance pan, or suspended above the pan by a small hooked wire girdle. [Pg.419]

Cuprous cyanide solution. The most satisfactory method is to dissolve the cuprous cyanide (1 mol) in a solution of technical sodium cyanide (2 5-2-6 mols in 600 ml. of water). If it is desired to avoid the preparation of solid cuprous cyanide, the following procedure may be adopted. Cuprous chloride, prepared from 125 g. of copper sulphate crystals as described under 1 above, is suspended in 200 ml. of water contained in a 1-litre round-bottomed flask, which is fitted with a mechanical stirrer. A solution of 65 g. of technical sodium cyanide (96-98 per cent.) in 100 ml. of water is added and the mixture is stirred. The cuprous chloride passes into solution with considerable evolution of heat. As the cuprous cyanide is usually emplo3 ed in some modification of the diazo reaction, it is usual to cool the resulting solution in ice. [Pg.192]

The vanadium pentoxide catalyst Is prepared as follows Suspend 5 g. of pure ammonium vanadate in 50 ml. of water and add slowly 7 5 ml. of pure concentrated hydrochloric acid. Allow the reddish-brown, semi-colloidal precipitate to settle (preferably overnight), decant the supernatant solution, and wash the precipitate several times by decantation. Finally, suspend the precipitate in 76 ml. of water and allow it to stand for 3 days. This treatment renders the precipitate granular and easy to 6lter. Filter the precipitate with suction, wash it several times with cold 5 p>er cent, sodium chloride solution to remove hydrochloric acid. Dry the product at 120° for 12 hours, grind it in a mortar to a fine powder, and heat again at 120° for 12 hours. The yield of catalyst is about 3 - 5 g. [Pg.463]

In general, benzoylation of aromatic amines finds less application than acetylation in preparative work, but the process is often employed for the identification and characterisation of aromatic amines (and also of hydroxy compounds). Benzoyl chloride (Section IV, 185) is the reagent commonly used. This reagent is so slowly hydrolysed by water that benzoylation can be carried out in an aqueous medium. In the Schotten-Baumann method of benzoylation the amino compound or its salt is dissolved or suspended in a slight excess of 8-15 per cent, sodium hydroxide solution, a small excess (about 10-15 per cent, more than the theoretical quantity) of benzoyl chloride is then added and the mixture vigorously shaken in a stoppered vessel (or else the mixture is stirred mechanically). Benzoylation proceeds smoothly and the sparingly soluble benzoyl derivative usually separates as a solid. The sodium hydroxide hydrolyses the excess of benzoyl chloride, yielding sodium benzoate and sodium chloride, which remain in solution ... [Pg.582]

Suspend 35 g. of finely-powdered hydrazine sulphate in 125 ml. of hot water contained in a 400 ml. beaker, and add, with stirring, 118 g. of crystallised sodium acetate or 85 g. of potassium acetate. Boil the mixture for 5 minutes, cool to about 70°, add 80 ml. of rectified spirit, filter at the pump and wash with 80 ml. of hot rectified spirit. Keep the filtered hydrazine solution for the next stage in the preparation. [Pg.638]

Preparation of palladium - calcium carbonate catalyst. Prepare 60 g. of precipitated calcium carbonate by mixing hot solutions of the appropriate quantities of A.R. calcium chloride and A.R. sodium carbonate. Suspend the calcium carbonate in water and add a solution containing 1 g. of palladium chloride. Warm the suspension until all the palladium is precipitated as the hydroxide upon the calcium carbonate, i.e., until the supernatant liquid is colourless. Wash several times with... [Pg.891]

Ccasionally the reaction mixture does not become completely black nor free from suspended solid here the acetylide is in an insoluble (or sparingly soluble) form, but it gives satisfactory results in the preparation of hex-l-yne. The saturated solution of the soluble form of mono-sodium acetylide in liquid ammonia at — 34° is about i- M. [Pg.900]

C. Palladium on carbon catalyst (5 per cent. Pd). Suspend 41-5 g. of nitric acid - washed activated carbon in 600 ml. of water in a 2-litre beaker and heat to 80°. Add a solution of 4 1 g. of anhydrous palladium chloride (1) in 10 ml. of concentrated hydrochloric acid and 25 ml. of water (prepared as in A), followed by 4 ml. of 37 per cent, formaldehyde solution. Stir the suspension mechanically, render it alkaUne to litmus with 30 per cent, sodium hydroxide solution and continue the stirring for a further 5 minutes. Filter off the catalyst on a Buchner funnel, wash it ten times with 125 ml. portions of water, and dry and store as in B. The yield is 46 g. [Pg.950]

This last solution should be prepared slowly as it is quite exothermic. Set all three aside in a freezer. Now prepare the mixing apparatus which will be a stainless steel "mixing bowl" suspended In the ice/salt bath made earlier. We use a stainless steel bowl here so that heat transfer will be maximal, while preventing any corrosive interaction. A glass bowl will not be sufficient for larger scale preparations as it will not conduct heat fast enough to prevent the reactants from going over IOC (at which point the Haloamide will decompose and you ll have to start over). Take the Sodium Hydroxide solution out of the freezer once it is cool, but not cold. [Pg.262]

Procedure. Prepare a set of external standards containing 0.5 g/L to 3.0 g/L creatinine (in 5 mM H2SO4) using a stock solution of 10.00 g/L creatinine in 5 mM H2SO4. In addition, prepare a solution of 1.00 x 10 M sodium picrate. Pipet 25.00 mL of 0.20 M NaOH, adjusted to an ionic strength of 1.00 M using Na2S04, into a thermostated reaction cell at 25 °C. Add 0.500 mL of the 1.00 x 10 M picrate solution to the reaction cell. Suspend a picrate ion-selective electrode in the solution, and monitor the potential until it stabilizes. When the potential is stable, add 2.00 mL of a... [Pg.632]

Anionic and nonionic polyacrylamides effectively remove suspended soHds such as silt and clay from potable water. SuppHers provide special grades which meet EPA/FDA regulations for residual acrylamides. A recent pubHcation (102) states that hydrolyzed polyacrylamides with narrow interchain charge distributions provide better performance in flocculation of clay. These polymers were prepared by alkaline hydrolysis. (See Flocculating agents.)... [Pg.143]

More complex shapes can be made by cold isostatic pressing (CIP). CIP uses deformable mbber molds of the required shape to contain the powder. The appHcation of isostatic pressure to the mold suspended in a pressure transfer media, such as oil, compacts the powder. CIP is not as easily automated as uniaxial pressing, but has found wide appHcation in the preparation of more complex shapes such as spark plug insulators (26). [Pg.311]

Water Treatment. Flotation in water treatment is used both for the removal of dissolved ions such as Cu ", Cr ", or (PO or surfactants and suspended soHds as in the case of sludge treatment. The final product in this case is purified water rather than a mineral concentrate. Furthermore, water is treated either for drinking purposes (potable water preparation) or safe disposal to the environment. [Pg.52]

Preparation. In the laboratory, sulfur tetrafluoride is made by combining SCI2 and NaF suspended in acetonitrile at ca 77°C (106). For commercial production, SF is made by direct combination of sulfur with elemental fluorine (107). Commercial appHcations of SF are limited. It is available from Air Products and Chemicals. [Pg.244]

Eor some appHcations the powder is suspended in an aqueous medium or a solvent with the help of emulsifying agents and then sprayed onto the substrate. The powder is also used as a filler to prepare sprayable compositions of PTEE dispersions, which then can be used to coat various substrates (36). [Pg.377]

Wettable powders are prepared by blending the toxicant in high concentration, usually from 15 ndash 95%, with a dust carrier such as attapulgite which wets and suspends properly in water. One to two percent of a surface-active agent usually is added to improve the wetting and suspensibiUty of the powder. Sprays of wettable powders are used widely in agriculture because of their relative safety to plants. [Pg.301]

The electrolyte is prepared by dipping granulated lead, suspended in a basket, into and out of the fluosUicic acid. The lead oxidizes during the operation and lead fluosUicate is formed ... [Pg.47]

Ophthalmic Dosage Forms. Ophthalmic preparations can be solutions, eg, eye drops, eyewashes, ointments, or aqueous suspensions (30). They must be sterile and any suspended dmg particles must be of a very fine particle size. Solutions must be particle free and isotonic with tears. Thus, the osmotic pressure must equal that of normal saline (0.9% sodium chloride) solution. Hypotonic solutions are adjusted to be isotonic by addition of calculated amounts of tonicity adjusters, eg, sodium chloride, boric acid, or sodium nitrate. [Pg.234]


See other pages where Preparation suspended is mentioned: [Pg.538]    [Pg.264]    [Pg.757]    [Pg.782]    [Pg.13]    [Pg.132]    [Pg.538]    [Pg.264]    [Pg.757]    [Pg.782]    [Pg.13]    [Pg.132]    [Pg.191]    [Pg.381]    [Pg.2669]    [Pg.604]    [Pg.883]    [Pg.237]    [Pg.25]    [Pg.35]    [Pg.121]    [Pg.411]    [Pg.241]    [Pg.241]    [Pg.469]    [Pg.264]    [Pg.436]    [Pg.223]    [Pg.139]    [Pg.303]    [Pg.322]    [Pg.427]    [Pg.178]    [Pg.48]   
See also in sourсe #XX -- [ Pg.308 ]




SEARCH



Suspending

© 2024 chempedia.info