Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Preparation diamond synthesis

Successful hydrothermal diamond synthesis was carried out in autoclaves filled with a specially prepared carbon enriched water solution , the composition of which was not disclosed [15,45,46]. The carbon precursor should be fine-grained diamond, vitreous carbon or emulsion of crude oil and water [29]. The presence of free radical catalysts was mentioned and paragenetic crystallization of quartz needles and diamond indicate the presence of silicon [45]. The synthesis was described as a sol/gel colloidal process working in the range 200-600°C and 100-200 MPa. Healing and joining of diamond crystals was reported. After 21 days at 400°C and 170 MPa, thin colorless films of polycrystalline diamond were obtained on (111) surfaces of seed crystals (Fig. 3c). With a reported size of 15-40 pm, these are the largest diamond crystals from hydrothermal experiments. [Pg.382]

Abstract The past two decades have profoundly changed the view that we have of elemental carbon. The discovery of the fullerenes, spherically-shaped carbon molecules, has permanently altered the dogma that carbon can only exist in its two stable natural allotropes, graphite and diamond. The preparation of molecular and polymeric acetylenic carbon allotropes, as well as carbon-rich nanometer-sized structures, has opened up new avenues in fundamental and technological research at the interface of chemistry and the materials sciences. This article outlines some fascinating perspectives for the organic synthesis of carbon allotropes and their chemistry. Cyclo[n]carbons are the first rationally designed molecular carbon allotropes, and... [Pg.163]

Very recently, Solozhenko [540] reported the high-pressure-high-temperature synthesis of cubic BC2N with in situ control of the reaction by x-ray diffraction measurement. The first high-density product has been obtained in a laser-heated diamond anvil cell (DAC). The starting material was g-BC N, prepared... [Pg.216]

We have developed solvothermal synthesis as an important method in research of metastable structures. In the benzene-thermal synthesis of nanocrystalline GaN at 280°C through the metathesis reaction of GaClj and U3N, the ultrahigh pressure rocksalt type GaN metastable phase, which was previously prepared at 37 GPa, was obtained at ambient condition [5]. Diamond crystallites were prepared from catalytic reduction of CCI4 by metallic sodium in an autoclave at 700°C (Fig.l) [6]. In our recent studies, diamond was also prepared via the solvothermal process. In the solvothermal catalytic metathesis reaction of carbides of transition metals and CX4 (X = F, Cl, Br) at 600-700°C, Raman spectrum of the prepared sample shows a sharp peak at 1330 cm" (Fig. 1), indicating existence of diamond. In another process, multiwalled carbon nanotubes were synthesized at 350°C by the solvothermal catalytic reaction of CgCle with metallic potassium (Fig. 2) [7]. [Pg.28]

Peptide microarrays are prepared by immobilizing many peptide molecules on the surface of a solid support in a small area in an addressable fashion. The immobilization can be achieved via in situ synthesis or chemical ligation through a covalent bond. A hydrophihc linker between the sohd surface and the peptide usually is added to minimize steric hinderance caused by the sohd support. The most commonly used solid support for microarray printing is a standard microscope glass slide. Other solid supports also have been used such as polystyrene, nitrocellulose membranes, PVDF membranes, Hybond ECL membranes, gold surfaces, and chemical vapor deposited diamond films. [Pg.1430]

Nine compositions with the diamond concentration of 3, 5, 7, 9, 10, 12, 15, 20, 25 mass % were mixed with the charge Ti-C-Mo to produce multi-layered semi-products. The ready mixtures were placed layer-by-layer into a pressform in the following order diamondless layer weighing 25,5 g 3 mass % diamond layer, weighing 10 g 5 % layer -10 g 7 % layer - 10 g 9 % layer - 9,9 g 12 % layer - 9,9 g. After densification pellets were obtained 48 mm in diameter with the thickness of the layers 5.0, 2.0, 2.0, 2.0, 2.0, 2.0 mm correspondently. Multilayered pellets with the diamond concentration from layer to layer as much as 0, 5, 10, 15, 20, 25 % mass were prepared similarly. The final pellet was placed into a reactional mold. An SHS reaction was initiated from the lateral face of the cylindrical pellet by a tungsten spiral. After accomplishment of the combustion reaction and propagation of the combustion synthesis wave, the hot SHS-products were compacted in a hydraulic press at P > 400 MPa for no more than 10 s. The time of exposure to pressure was chosen dependent on the combustion temperature and reology of the products, e.g., on their plasticity and the amount of the liquid phase formed. Usually this time is 0.5 -4 2 sec. SHS-products were cooled at the room temperature. [Pg.284]

The experimental results indicate that in the range of nanometers other rules apply to the stability of different carbon structures than would on a macroscopic scale. This is evident, for example, from the spontaneous formation of various diamond materials with nanoscopic particles in different methods of preparation like CVD or detonation and shock wave synthesis. The products obtained include polycrys-taUine materials with particle dimension of 1-60 (tm that consist of primary par-... [Pg.336]

Depending on the method of their preparation, the individual nanodiamond particles do not exist as isolated crystallites, but they form tightly bound agglomerates. Apart from unordered sp - and sp -hybridized carbon, they may also include other impurities. The latter may originate either from synthesis or purification, for example, finely dispersed material from the reactor walls may contaminate the sample (Section 5.3). This is especially true for material produced by the detonation or shock wave method, whereas hydrogen-terminated diamond nanoparticles do not show this effect. [Pg.338]

By shock synthesis A carbon material is converted into diamond by the action of a shock wave generated, for example, by a detonation or a projectile. This procedure is employed, for instance, to prepare polycrystalline microdiamond with primary particles measuring in the range of nanometers. [Pg.387]

The synthesis of diamond and cubic boron nitride has strongly motivated improvements in the development of high-pressure equipment and increased the interest in these materials, which have exceptional properties. Single crystals are required for optical and electronic applications. Consequently, specific crystal-growth processes have been set up under very high-pressure conditions. The principle is similar to that described, at lower pressures, for the preparation of single crystals of a-Si02. [Pg.341]

Among the most attractive tasks for a plasma chemist is the possibility of preparation of diamond, a high temperature and high pressure modification of carbon. The conventional synthesis of diamond is performed in its stability region at a pressure of several ten kilobars and several thousand degrees Kelvin, using suitable solvent catalysts in order to overcome the kinetic barrier for the transition from sp to sp hybridization of C-atoms. Without a catalyst the graphite diamond transition occurs only at pressures of several hundred kilobars... [Pg.48]

Single crystal cBN is not of industrial importance for cutting applications as it offers few benefits over monocrystalline diamond and is intrinsically more difficult to synthesize. As such, all industrial cBN tools are composite materials prepared using powder metallurgical techniques, but sintered under similar conditions to those used for the synthesis of diamond and cBN from their softer allotropes (graphite in the case of diamond). [Pg.1187]


See other pages where Preparation diamond synthesis is mentioned: [Pg.506]    [Pg.541]    [Pg.348]    [Pg.228]    [Pg.39]    [Pg.85]    [Pg.152]    [Pg.228]    [Pg.74]    [Pg.106]    [Pg.168]    [Pg.148]    [Pg.545]    [Pg.3]    [Pg.85]    [Pg.215]    [Pg.170]    [Pg.84]    [Pg.29]    [Pg.368]    [Pg.49]    [Pg.329]    [Pg.285]    [Pg.89]    [Pg.143]    [Pg.84]    [Pg.335]    [Pg.340]    [Pg.346]    [Pg.357]    [Pg.390]    [Pg.150]    [Pg.181]    [Pg.293]    [Pg.375]    [Pg.574]    [Pg.1086]    [Pg.1094]    [Pg.78]   
See also in sourсe #XX -- [ Pg.391 ]




SEARCH



Diamond preparation

Preparation Synthesis

© 2024 chempedia.info