Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Precoat applications

With the exception of the precoat applications, RVF s do not usually yield absolutely clear filtrate. Although still widely used, rotary vacuum filters are, in some cases, being replaced by membrane separation technology as the method of choice for clarification of fermentation broths and concentrating cell mass. Membranes can yield more complete filtration clarification, but often a wetter cell paste. [Pg.254]

Fig. 20.9 A beer and yeast recovery system. 1. Fermenter 2. Beer clarifier 3. Surge tank 4. Yeast suspension tank 5. Filter aid mixer 6. Yeast (autolysis) tank 7. Rotary vacuum filter 8. Top feed applicator 9. Precoat applicator 10. Yeast suspension spray 11. Defoamer 12. Vacuum pump 13. Beer recovery tank 14. Pasteurizer 15. Yeast drier A. Wort preparation B. Beer treatment C. Dried yeast. (Based on drawing of Alfa-Laval Ltd.)... Fig. 20.9 A beer and yeast recovery system. 1. Fermenter 2. Beer clarifier 3. Surge tank 4. Yeast suspension tank 5. Filter aid mixer 6. Yeast (autolysis) tank 7. Rotary vacuum filter 8. Top feed applicator 9. Precoat applicator 10. Yeast suspension spray 11. Defoamer 12. Vacuum pump 13. Beer recovery tank 14. Pasteurizer 15. Yeast drier A. Wort preparation B. Beer treatment C. Dried yeast. (Based on drawing of Alfa-Laval Ltd.)...
For precoat applications to rotary filters, the relative usefulness of various filter aids requires experimental data on the effects on the following variables ... [Pg.52]

Schweitzer, op. cit., sec. 4.2) and Hutto [Am. Tn.st. Chem. Eng. Symp. Ser, 73(171), 50 (1977)]. Figure 18-109 shows a flowsheet indicating arrangements for both precoat and body-feed applications. Most filter aid is used on a one-time basis, although some techniques have been demonstrated to reuse precoat filter aid on vertical-tube pressure filters. [Pg.1708]

Economics Microfiltratiou may be the triumph of the Lilliputians nonetheless, there are a few large-industrial applications. Dextrose plants are veiy large, and as membrane filtration displaces the precoat filters now standard in the industry, very large membrane microfiltratiou equipment will be built. [Pg.2046]

Filter aids may be applied in one of two ways. The first method involves the use of a precoat filter aid, which can be applied as a thin layer over the filter before the suspension is pumped to the apparatus. A precoat prevents fine suspension particles from becoming so entangled in the filter medium that its resistance becomes exces-sive. In addition it facilitates the removal of filter cake at the end of the filtration cycle. The second application method involves incorporation of a certain amount of the material with the suspension before introducing it to the filter. The addition of filter aids increases the porosity of the sludge, decreases its compressibility, and reduces the resistance of the cake. In some cases the filter aid displays an adsorption action, which results in particle separation of sizes down to 0.1 /i. The adsorption ability of certain filter aids, such as bleached earth and activated charcoals, is manifest by a decoloring of the suspension s liquid phase. This practice is widely used for treating fats and oils. The properties of these additives are determined by the characteristics... [Pg.106]

The ability of an admix to be retained on the filter medium depends on both the suspension s concentration and the filtration rate during this initial precoat stage. The same relationships for porosity and the specific resistance of the cake as functions of suspension concentration and filtration rate apply equally to filter aid applications. [Pg.108]

In precoating, the prime objective is to prevent the filter medium from fouling. The volume of initial precoat normally applied should be 25 to 50 times greater than that necessary to fill the filter and connecting lines. This amounts to about 5-10 lb/100 fF of filter area, which typically results in a 1/16-in. to 1/8-in. precoat layer over the outer surface of the filter medium. An exception to this rule is in the precoating of continuous rotary drum filters where a 2-in. to 4-in. cake is deposited before filtration. The recommended application method is to mix the precoat material with clear liquor (which may consist of a portion of the filtrate). This mixture should be recycled until all the precoat has been deposited onto the filter medium. The... [Pg.108]

Diatomaceous earths may resemble the forms of the charcoals. The earths are primarily filter aids, precoats or adsorbents, the hmction of the filter medium being secondary. Fuller s earth and clays are used for decoloring applications diatomaceous earths are used for clarification. The adsorbtivity of diatomaceous earth works in the same fashion as activated carbon, but isotherms (affinity) for many chemical species like the hydrocarbons is weaker. For this reason, activated charcoal or carbon is much preferred in wastewater treatment applications expecially when taste and odor issues are priorities. [Pg.141]

Once the precoating stage is completed the process slurry is pumped into the filter, the forming cake is retained on the plates and the filtrate flows to further processing. When the solids are fine and slow to filter a body-aid is added to the feed slurry in order to enhance cake permeability. However, it should be kept in mind that the addition of body-aid increases the solids concentration in the feed so it occupies additional volume between the plates and increases the amount of cake for disposal. Likewise, for all those applications when the cake is the product, precoat and filter-aid may not be used since they mix and discharge together with the cake. [Pg.187]

Body-aid (i.e., the filter-aid) and precoating are often mentioned in connection with pressure filtration and the difference in their application is (1) Body aid is used when the slurry is low in solids content with fine and slimy particles that are difficult to filter. To enhance filtration coarse solids with large surface area are added to the slurry and serve as a body-aid that captures and traps in its interstices... [Pg.192]

Figures 4-65, 4-66, and 4-67 show several units of the bag. The bags may be of cotton, wool, synthetic fiber, and glass or asbestos with temperature limits on such use as 180°F, 200°F, 275°F, 650°F respectively, except for unusual rnaterials. (See Table 4-12A and B.) These units are used exclusively on dry solid particles in a gas stream, not being suitable for wet or moist applications. The gases pass through the woven filter cloth, depositing the dust on the surface. At intervals the unit is subject to a de-dust-ing action such as mechanical scraping, shaking or back-flow of clean air or gas to remove the dust from the cloth. The dust settles to the lower section of the unit and is removed. The separation efficiency may be 99%-i-, but is dependent upon the system and nature of the particles. For extremely fine particles a precoat of dry dust similar to that used in some wet filtrations may be required before re-establishing the pi ocess gas-dust flow. Figures 4-65, 4-66, and 4-67 show several units of the bag. The bags may be of cotton, wool, synthetic fiber, and glass or asbestos with temperature limits on such use as 180°F, 200°F, 275°F, 650°F respectively, except for unusual rnaterials. (See Table 4-12A and B.) These units are used exclusively on dry solid particles in a gas stream, not being suitable for wet or moist applications. The gases pass through the woven filter cloth, depositing the dust on the surface. At intervals the unit is subject to a de-dust-ing action such as mechanical scraping, shaking or back-flow of clean air or gas to remove the dust from the cloth. The dust settles to the lower section of the unit and is removed. The separation efficiency may be 99%-i-, but is dependent upon the system and nature of the particles. For extremely fine particles a precoat of dry dust similar to that used in some wet filtrations may be required before re-establishing the pi ocess gas-dust flow.
Plates with 0.5- to 2-mm layer thickness are normally nsed for increased loading capacity. Layers can be self-made in the laboratory, or commercially precoated preparative plates are available with silica gel, alumina, cellulose, C-2 or C-18 bonded siliea gel, and other sorbents. Resolution is lower than on thinner analytical layers having a smaller average partiele size and particle size range. Precoated plates with a preadsorbent or eoneentrating zone faeilitate application of sample bands. [Pg.4]

Manufacturers of TLC materials and accessories are well prepared to satisfy the needs for professionally performed PLC. High-quality precoated preparative plates are available from a number of eommercial sources. Alternatively, less expensive or specialty preparative plates ean be homemade in the laboratory, and loose sorbents and coating devices ean be purehased for this purpose. More-or-less-automated devices can also be purehased for band application of higher quantities of sample solutions to preparative layers. At least for some users, sophisticated densitometric and other instrumental techniques are available as nondestructive tools for preliminary detention and identification of separated compounds in order to enhance the effieiency of their isolation. The only aid still missing, and maybe the most important of all, is a comprehensive monograph on PLC that might encourage and instruct many potential users on how to fully benefit from this very versatile, efficient, relatively inexpensive, and rather easy to use isolation and purification technique. This book was planned to fill that void. [Pg.7]

More stringent requirements, especially with regard to separation efficiency and reproducibihty in preparative planar chromatography also, led to increased application of precoated plates in this field. Figure 3.3 shows a scanning electron micrograph of a cross section through a PLC plate silica gel. [Pg.43]

Until now the application of different types of bnlk sorbents nsed for handmade PLC plates is rather widespread, and in most cases the mannfactnrers of these materials provide detailed instructions for the preparation of the preparative layers. However, the quality and especially the reproducibility of these handmade plates is frequently rather poor. Dne to this, the development of modem TLC and HPTLC, and precoated PLC plates also, becomes increasingly more important. [Pg.58]

The most-nsed stationary phase in PLC is sihca gel, with type 60 taking preference. In the fnture, other sorbents snch as the RP materials will also most probably be increasingly nsed. This will also be trae for the case of special PLC plates consisting of layer combinations snch as precoated plates with concentrating zones, resnlting in simphfication of sample application as well as an increase in the efficiency of separation. [Pg.58]

These aspects of solvent property similarly apply to precoated impregnated silica gel plates, e.g., by ammonium sulfate, silver nitrate, or magnesium acetate, as well as to microcrystalline cellulose precoated plates. On preparative RP phases, water has the lowest elution power. Therefore, more polar or aqueous solvents should be preferred. In contrast to HPTLC RP-18 layers, on which such aqueous solutions remain as a drop on the surface and are not able to penetrate through the lipophilic layer, on preparative RP phases, pnre aqneons application solutions can be apphed owing to the minor degree of C18 modification. [Pg.102]

A very helpful tool for manual application can be the employment of layers with a concentrating zone. The so-called concentrating or preadsorbent zone is a small part of the plate that is covered with an inert but highly porous adsorbent such as diatomaceous earth. Various precoated preparative layers with a preadsorbent zone are commercially available. The effect of the concentrating zone is depicted elsewhere in detail (see Chapter 3, Figure 3.4). In brief, the preadsorbent zone serves as a platform for manual application of any desired performance quality. When development starts, soluble components migrate with the mobile phase front and are... [Pg.105]

To obtain alkanes and alkenes from ahphatic hydrocarbon fractions, argentation PLC was proposed that utihzed sihca-gel-60-precoated plates impregnated with 5% or 10% of AgNOj [37,80,99,100]. In some applications, TLC plates impregnated... [Pg.378]

Disc filters are similar in principle to rotary filters, but consist of several thin discs mounted on a shaft, in place of the drum. This gives a larger effective filtering area on a given floor area, and vacuum disc filters are used in preference to drum filters where space is restricted. At sizes above approximately 25 m2 filtration area, disc filters are cheaper but their applications are more restricted, as they are not as suitable for the application of wash water, or precoating. [Pg.413]

Krzek et al. [35] reported the qualitative identification and quantitative analysis of the mixtures of OTC, tiamulin, lincomycin, and spectinomycin in the veterinary preparations by using TLC/densitometry. As stationary phase, they used precoated TLC aluminum sheets, and the mobile phases were mixtures of 10% citric acid solution, hexane, ethanol (80 1 1, v/v), and n-butanol, ethanol, chloroform, 25% ammonia (4 5 2 5, v/v). The other application of TLC or HPTLC for analyzing OTC in the various samples is summarized in Table 2 [36]. [Pg.105]

In a second experiment, Cy5-labelled antiBSA antibodies were immobilised on a silanised glass slide precoated with metallic nanoislands using a polydimethylsiloxane (PDMS) flow-cell. The antibody solution was left for 1 hour to attach and then the cell was flushed with deionised water. The slide was then dried with N2. For this experiment, a portion of the slide was not coated with metallic nanoislands, in order to act as a reference. Figure 20 shows the image recorded using the fluorescence laser scanner mentioned previously. The enhancement in fluorescence emission between those areas with and without nanoislands (B and A, respectively) is again evident. For both chips, an enhancement factor of approximately 8 was recorded. There is considerable interest in the elucidation and exploitation of plasmonic effects for fluorescence-based biosensors and other applications. [Pg.212]

The method of preparation for the second type of paint consisted of mechanical polishing, cleaning, phosphatlng for 5 minutes with Oxy-Plus 84 DRS solution, drying for 30 minutes without rinsing, application of one layer of precoat followed by air drying for 4 hours at room temperature and application of one layer of Marlnox SR-2 paint followed by curing for 8 days at room temperature. [Pg.63]

Slides specifically selected for microarray applications should be used. They are available as ultracleaned (an important consideration) and untreated for those who wish to prepare their own surfaces or they can be purchased with a variety of precoated surface chemistries (e.g., lysine, aldehyde, or epoxide). The densities of reactive groups and surface coating uniformity are difficult to control. Thus, if lot-to-lot slide consistency is most important factor, consider using commercially available slides that are quality controlled. [Pg.95]

Thin-layer chromatography (TLC), sometimes also called planar chromatography, employ a stationary phase immobilized on a glass or plastic plate and an organic mobile phase. It is a rather old technique whose application in residue analysis has been limited in the past by poor chromatographic resolution, inadequate selectivity, and insufficient sensitivity (49). This was due to inherent problems in the quality of the available stationary phase materials and in the uniformity of the layers prepared. Today, the availability of affordable, precoated plates with acceptable performance and consistency has led to the general acceptance of TLC as an efficient procedure for residue analysis (50). The method is used preferentially when analysts must process large numbers of samples in a short period of time (51). [Pg.674]


See other pages where Precoat applications is mentioned: [Pg.52]    [Pg.52]    [Pg.1708]    [Pg.91]    [Pg.115]    [Pg.129]    [Pg.192]    [Pg.522]    [Pg.7]    [Pg.43]    [Pg.178]    [Pg.408]    [Pg.343]    [Pg.852]    [Pg.309]    [Pg.419]    [Pg.8]    [Pg.401]    [Pg.429]    [Pg.430]    [Pg.140]    [Pg.231]   
See also in sourсe #XX -- [ Pg.15 , Pg.52 ]




SEARCH



Precoat

Precoating

Precoats

© 2024 chempedia.info