Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium permanganate-perchlorate

Hydrogen chloride Acetic anhydride, aluminum, 2-aminoethanol, ammonia, chlorosulfonic acid, ethylenediamine, fluorine, metal acetylides and carbides, oleum, perchloric acid, potassium permanganate, sodium, sulfuric acid... [Pg.1208]

Potassium permanganate oxidizes succinic acid to a mixture of malic and tartaric acid [133-37-9]. 3-Hydroxypropionic acid [503-66-2] is obtained with sodium perchlorate. Cerium(IV) sulfate in sulfuric acid medium oxidizes succinic acid to oxaloacetic acid (71). [Pg.535]

Nitroparaffins Oxalic acid Oxygen Perchloric acid Peroxides, organic Phosphorus (white) Potassium chlorate Potassium perchlorate Potassium permanganate Silver... [Pg.233]

Note The TDM reagent can be used everywhere, where o-tolidine is employed. It can also be used on chromatograms, that have already been treated with ninhydrin, Pauly or ammonia perchlorate reagent or with iodine vapor [1]. Water may be used in place of 80% 2-propanol when making up solutions II, III and IV. The chlorine gas atmosphere in the chromatography chamber can also be created by pouring 5 ml hydrochloric acid (ca. 20%) onto 0.5 g potassium permanganate in a beaker such a chlorine chamber is ready for use after 2 min. [Pg.108]

Douglas investigated heats of formation of dimethyl sulphoxide (and also of the sulphone) and proposed in a footnote that it could be determined by 5-min reaction with potassium permanganate/sulphuric acid, then adding excess iron(II) sulphate and finally titrating with permanganate. The same principle was used by Krishnan and Patel to determine dimethyl sulphoxide in various complexes (with perchlorates of titanyl, zirconyl and thorium), and by Krull and Friedmann to determine the same compound but using only dilute sulphuric acid and 5-min reaction. [Pg.114]

Redox titrants (mainly in acetic acid) are bromine, iodine monochloride, chlorine dioxide, iodine (for Karl Fischer reagent based on a methanolic solution of iodine and S02 with pyridine, and the alternatives, methyl-Cellosolve instead of methanol, or sodium acetate instead of pyridine (see pp. 204-205), and other oxidants, mostly compounds of metals of high valency such as potassium permanganate, chromic acid, lead(IV) or mercury(II) acetate or cerium(IV) salts reductants include sodium dithionate, pyrocatechol and oxalic acid, and compounds of metals at low valency such as iron(II) perchlorate, tin(II) chloride, vanadyl acetate, arsenic(IV) or titanium(III) chloride and chromium(II) chloride. [Pg.297]

Peroxides, organic Phosphorus (white) Potassium chlorate Potassium perchlorate Potassium permanganate Silver Acids (organic or mineral), avoid friction, store cold Air, oxygen Acids (see also chlorates) Acids (see also perchloric acid) Glycerol, ethylene glycol, benzaldehyde, sulphuric acid Acetylene, oxalic acid, tartaric acid, fulminic acid (produced in ethanol — nitric acid mixtures), ammonium compounds... [Pg.165]

Nitrosyl perchlorate Organic materials Perchloric acid Alcohols Permanganic acid Organic materials Peroxodisulfuric acid Organic liquids Potassium dioxide Ethanol Potassium perchlorate Ethanol Potassium permanganate Ethanol, etc. Ruthenium(VIII) oxide Organic materials Silver perchlorate Aromatic compounds Sodium peroxide Hydroxy compounds Uranium hexafluoride Aromatic hydrocarbons, etc. Uranyl perchlorate Ethanol See v-halomides Alcohols... [Pg.343]

In a review of the course and mechanism of the catalytic decomposition of ammonium perchlorate, the considerable effects of metal oxides in reducing the explosion temperature of the salt are described [1], Solymosi s previous work had shown reductions from 440° to about 270° by dichromium trioxide, to 260° by 10 mol% of cadmium oxide and to 200°C by 0.2% of zinc oxide. The effect of various concentrations of copper chromite , copper oxide, iron oxide and potassium permanganate on the catalysed combustion of the propellant salt was studied [2], Similar studies on the effects of compounds of 11 metals and potassium dichromate in particular, have been reported [3], Presence of calcium carbonate or calcium oxide has a stabilising effect on the salt, either alone or in admixture with polystyrene [4],... [Pg.1367]

The medium impact-sensitivity of this solid propellant component is greatly increased by co-crystallisation of certain impurities, notably nitryl perchlorate, potassium periodate and potassium permanganate [1]. The presence of certain minimum amounts of mono-, di, tri- or tetra-methylammonium perchlorates in the salt leads to a single step decomposition, at around 290°C for the monoderivative [2],... [Pg.1367]

Hydroxylamine is a powerful reducant, particularly when anhydrous, and if exposed to air on a fibrous extended surface (filter paper) it rapidly heats by aerobic oxidation. It explodes in contact with air above 70°C [1]. Barium peroxide will ignite aqueous hydroxylamine, while the solid ignites in dry contact with barium oxide, barium peroxide, lead dioxide and potassium permanganate, but with chlorates, bromates and perchlorates only when moistened with sulfuric acid. Contact of the anhydrous base with potassium dichromate or sodium dichromate is violently explosive, but less so with ammonium dichromate or chromium trioxide. Ignition occurs in gaseous chlorine, and vigorous oxidation occurs with hypochlorites. [Pg.1664]

Dichlorine oxide Oxidisable materials Iodine pentafluoride Metals Iodine Metals Nitrosyl fluoride Metals Perchloric acid Antimony(III) compounds Potassium dioxide Metals Potassium permanganate Antimony, etc. [Pg.1906]

MRH Ammonium nitrate 5.48/77, hydrogen peroxide 8.74/59, potassium permanganate 3.97/63, sodium bromate 6.19/68, sodium chlorate 8.45/60, sodium chlorite 7.36/65, sodium nitrate 6.07/58, sodium perchlorate 8.37/57, sodium peroxide 3.51/76... [Pg.1915]

Such carbonyls may be further oxidized using potassium permanganate (KMnO and perchloric acid (HCIO4) to convert all of these groups into carboxylic acids. Once functionalized in this manner, the nanotubes can be fully dispersed in aqueous systems. Kordas et al. (2006) used these derivatives to print nanotube patterns on paper or polymer surfaces to create conductive patterns for potential use in electronic circuitry. The carboxylates also may be used as conjugation sites to link other ligands or proteins to the nanotube surface using a carbodiimide reaction as previously discussed (Section 1, this chapter Chapter 2, Section 1.11 Chapter 3, Section 1). [Pg.640]

Aqueous perchlorate solutions, 18 274 Aqueous plugs, in microfluidics, 26 968 Aqueous polytetrafluoroethylene dispersions, 18 291 Aqueous potassium permanganate solutions, 15 597-600 Aqueous ring-opening metathesis polymerization (ROMP), 15 495... [Pg.67]

Potassium pentafluoroaluminate monohydrate, 2 371 Potassium perbromate, 4 335 Potassium perchlorate, 18 277 Potassium permanganate, 9 635-636 crystallographic studies on, 15 601 as a detoxicant, 15 621 decomposition of, 15 597 as an ignitable waste, 15 615 industrial-scale production of, 15 606 manufacture of, 15 601-606 for purifying carbon dioxide streams, 4 815... [Pg.752]

Feldman [37] digested solid samples with potassium dichromate, nitric acid, perchloric and sulphuric acid. Bishop et al. [38] used aqua regia and potassium permanganate for digestion. [Pg.403]

Nitrites, inorganic Nitrogen oxides (NOx) Oxygen Peracetic acid Perchloric acid solutions Potassium bromate Potassium chlorate Potassium dichloro-s-triazinetrione (potassium dichloroisocyanurate) Potassium dichromate Potassium percarbonate Potassium perchlorate Potassium permanganate Potassium peroxide Potassium persulfate Potassium superoxide n-Propyl nitrate... [Pg.64]

Palladium(II) oxide, 4825 Palladium(IV) oxide, 4835 Perchloric acid, 3998 Periodic acid, 4425 Permanganic acid, 4434 Peroxodisulfuric acid, 4482 Peroxodisulfuryl difluoride, 4328 Peroxomonosulfuric acid, 4481 Peroxytrifluoroacetic acid, 0666 Platinum hexafluoride, 4371 Platinum(IV) oxide, 4836 Plutonium hexafluoride, 4372 Potassium bromate, 0255 Potassium chlorate, 4017 Potassium dichromate, 4248 Potassium iodate, 4619 Potassium nitrate, 4650 Potassium nitrite, 4649 Potassium perchlorate, 4018 Potassium periodate, 4620 Potassium permanganate, 4647 Rhenium hexafluoride, 4373 Rubidium fluoroxysulfate, 4309 Ruthenium(VIII) oxide, 4862 Selenium dioxide, 4838 Selenium dioxide, 4838 Silver permanganate, 0021 Sodium chlorate, 4039 Sodium chlorite, 4038 Sodium dichromate, 4250 Sodium iodate, 4624 Sodium nitrate, 4721 Sodium nitrite, 4720... [Pg.309]

Potassium perchlorate. Aluminum powder Sodium perchlorate. Magnesium powder. Sulfur Potassium permanganate. Aluminum powder. Sulfur Potassium perchlorate. Magnesium powder. Sulfur Potassium chlorate. Charcoal powder. Sulfur... [Pg.139]

Potassium bichromate. Antimony sulfide Potassium permanganate. Powdered sugar Barium chlorate, Paraffln wax Potassium perchlorate. Cane sugar Sodium nitrate. Sulfur Sodium peroxide. Sulfur Sodium chlorite. Aluminum powder Magnesium chlorate. Aluminum powder Guanidine nitrate. Antimony powder Ammonium nitrate. Gasoline... [Pg.332]

Ammonium nitrate, Aluminum powder, Polyester resin, Ammonium bichromate, Charcoal powder Silver perchlorate, 5-Aminotetrazole, Perchloric acid Glycerin, Potassium permanganate Potassium permanganate, Glycerin Silver nitrate, Nitric acid, Ethanol Silver nitrate, Nitric acid, Ethanol... [Pg.336]

Other commercially important inorganic chemicals that can be made electrolytically include caustic soda and chlorine, chlorate and perchlorate salts (Chapter 12), potassium dichromate (K2Cr207), manganese dioxide, and potassium permanganate.16... [Pg.320]

Reduction of the complex on Raney nickel yielded benzylamine, N-methyl-benzylamine, and N,N-dimethylbenzylamine but no / -phenylbenzylamine, a reduction product resulting under the same reaction conditions from benzyl cyanide. Hydrolysis with dilute sulfuric acid in acetic acid yielded benzylamine only, and oxidation of the complex with potassium permanganate gave 4.2 moles of benzoic acid per mole of complex. The bromide anion can be exchanged metathetically with various other anions such as perchlorate, iodide, and thiocyanate. When heated at 100° C. in vacuum, the complex lost one mole of benzyl bromide and yielded only one dicyanotetrakis(benzylisonitrile)iron(II) complex. [Pg.108]


See other pages where Potassium permanganate-perchlorate is mentioned: [Pg.444]    [Pg.114]    [Pg.448]    [Pg.1477]    [Pg.404]    [Pg.412]    [Pg.412]    [Pg.307]    [Pg.146]    [Pg.281]    [Pg.281]    [Pg.102]    [Pg.142]    [Pg.271]    [Pg.224]    [Pg.289]    [Pg.385]    [Pg.396]    [Pg.404]    [Pg.348]   


SEARCH



Permanganates potassium permanganate

Potassium perchlorate

Potassium permanganate

Potassium permanganate-perchlorate decomposition

© 2024 chempedia.info