Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium importance

Few elements interfere with the determination of sodium and potassium. Important interferences via ionization suppression from other alkali metals present in the sample are minimized as mentioned above. Interferences from high mineral acid concentrations on sodium and potassium absorption may be compensated for by matching sample and standard solutions with respect to acid type and concentration. For samples containing very high concentrations of sodium or potassium, the burner may be angled to reduce the need for excessive dilution. Alternatively the less sensitive (by a factor of about 150 for sodium and 200 for potassium) 330.24/330.30 nm (Na) and 404.41 nm (K) absorption lines may be employed. [Pg.172]

Potassium in its ionic form, K+, is the most abundant positive ion in human and animal cells. As an electrolytic solution, K+ ions are pumped through the blood to all vital organs. Potassiums importance to the physiological system cannot be overstated It plays a crucial role in electrical pulse transmission along nerve fibers protein synthesis acid-base balance and formation of collagen, elastin, and muscle. [Pg.72]

In northern and temperate regions, tradition (verified by research) recommends relatively high planting densities of around 10000 vines/ha. In a drier, Mediterranean climate, optimum quality is often obtained with a density of between 3000 and 5000 vines/ha. In spite of the water deficit, the high density restricts potassium imports and maintains a good acidity level in wines made from these grapes. [Pg.281]

Andrews deration An important titration for the estimation of reducing agents. The reducing agent is dissolved In concentrated hydrochloric acid and titrated with potassium iodale(V) solution. A drop of carbon tetrachloride is added to the solution and the end point is indicated by the disappearance of the iodine colour from this layer. The reducing agent is oxidized and the iodate reduced to ICl, i.e. a 4-eiectron change. [Pg.34]

The most important reaction of the sulphonic acids is their conversion into phenols by fusion with caustic alkalis. When they are fused with potassium cyanide, nitriles are obtained, e.g. benzonitriie from ben-zenesulphonic acid. [Pg.378]

This localization phenomenon has also been shown to be important in a case of catalysis by premicellar aggregates. In such a case [ ] premicellar aggregates of cetylpyridinium chloride (CPC) were shown to enhance tire rate of tire Fe(III) catalysed oxidation of sulphanilic acid by potassium periodate in tire presence of 1,10-phenantliroline as activator. This chemistry provides a lowering of tire detection limit for Fe(III) by seven orders of magnitude. It must also be appreciated, however, tliat such premicellar aggregates of CPC actually constitute mixed micelles of CPC and 1,10-phenantliroline tliat are smaller tlian conventional CPC micelles. [Pg.2593]

IsoValeric acid. Prepare dilute sulphuric acid by adding 140 ml. of concentrated sulphuric acid cautiously and with stirring to 85 ml. of water cool and add 80 g. (99 ml.) of redistilled woamyl alcohol. Place a solution of 200 g. of crystallised sodium dicliromate in 400 ml. of water in a 1-litre (or 1-5 litre) round-bottomed flask and attach an efficient reflux condenser. Add the sulphuric acid solution of the isoamyl alcohol in amaU portions through the top of the condenser shake the apparatus vigorously after each addition. No heating is required as the heat of the reaction will suffice to keep the mixture hot. It is important to shake the flask well immediately after each addition and not to add a further portion of alcohol until the previous one has reacted if the reaction should become violent, immerse the flask momentarily in ice water. The addition occupies 2-2-5 hours. When all the isoamyl alcohol has been introduced, reflux the mixture gently for 30 minutes, and then allow to cool. Arrange the flask for distillation (compare Fig. II, 13, 3, but with the thermometer omitted) and collect about 350 ml. of distillate. The latter consists of a mixture of water, isovaleric acid and isoamyl isovalerate. Add 30 g. of potassium not sodium) hydroxide pellets to the distillate and shake until dissolved. Transfer to a separatory funnel and remove the upper layer of ester (16 g.). Treat the aqueous layer contained in a beaker with 30 ml. of dilute sulphuric acid (1 1 by volume) and extract the liberated isovaleric acid with two... [Pg.355]

The residue in the flask will contain the sodium (or potassium) salt of the acid together with excess of alkali. Just acidify with dilute sulphuric acid and observe whether a crystalline acid separates if it does, filter, recrystallise and identify (Section 111,85). If no crystaUine solid is obtained, the solution may be just neutralised to phenolphthalein and the solution of the alkali salt used for the preparation of a crystaUine derivative. This wiU confirm, if necessary, the results of hydrolysis by method 1. If the time factor is important, either method 1 or the product of the caustic alkali hydrolysis may be used for the identification of the acid. [Pg.391]

An alloy of sodium with potassium, NaK, is also an important heat transfer agent. [Pg.28]

The compounds of greatest importance are aluminum oxide, the sulfate, and the soluble sulfate with potassium (alum). The oxide, alumina, occurs naturally as ruby, sapphire, corundum, and emery, and is used in glassmaking and refractories. Synthetic ruby and sapphire are used in lasers for producing coherent light. [Pg.32]

Certain minerals, however, such as sylvite, carnallite, langbeinite, and polyhalite are found in ancientlake and sea beds and form rather extensive deposits from which potassium and its salts can readily be obtained. Potash is mined in Germany, New Mexico, California, Utah, and elsewhere. Large deposits of potash, found at a depth of some 3000 ft in Saskatchewan, promise to be important in coming years. [Pg.45]

An alloy of sodium and potassium (NaK) is used as a heat-transfer medium. Many potassium salts are of utmost importance, including the hydroxide, nitrate, carbonate, chloride, chlorate, bromide, iodide, cyanide, sulfate, chromate, and dichromate. [Pg.46]

All compounds of chromium are colored the most important are the chromates of sodium and potassium and the dichromates and the potassium and ammonium chrome alums. The dichromates are used as oxidizing agents in quantitative analysis, also in tanning leather. [Pg.69]

Iodine compounds are important in organic chemistry and very useful in medicine. Iodides, and thyroxine which contains iodine, are used internally in medicine, and as a solution of KI and iodine in alcohol is used for external wounds. Potassium iodide finds use in photography. The deep blue color with starch solution is characteristic of the free element. [Pg.123]

Torgov introduced an important variation of the Michael addition allylic alcohols are used as vinylogous a -synthons and 1,3-dioxo compounds as d -reagents (S.N. Ananchenko, 1962, 1963 H. Smith, 1964 C. Rufer) 1967). Mild reaction conditions have been successful in the addition of ],3-dioxo compounds to vinyl ketones. Potassium fluoride can act as weakly basic, non-nudeophilic catalyst in such Michael additions under essentially non-acidic and non-basic conditions (Y. Kitabara, 1964). [Pg.71]

Cydopentane reagents used in synthesis are usually derived from cyclopentanone (R.A. Ellison, 1973). Classically they are made by base-catalyzed intramolecular aldol or ester condensations (see also p. 55). An important example is 2-methylcydopentane-l,3-dione. It is synthesized by intramolecular acylation of diethyl propionylsucdnate dianion followed by saponification and decarboxylation. This cyclization only worked with potassium t-butoxide in boiling xylene (R. Bucourt, 1965). Faster routes to this diketone start with succinic acid or its anhydride. A Friedel-Crafts acylation with 2-acetoxy-2-butene in nitrobenzene or with pro-pionyl chloride in nitromethane leads to acylated adducts, which are deacylated in aqueous acids (V.J. Grenda, 1967 L.E. Schick, 1969). A new promising route to substituted cyclopent-2-enones makes use of intermediate 5-nitro-l,3-diones (D. Seebach, 1977). [Pg.81]

Solvent Effects on the Rate of Substitution by the S 2 Mechanism Polar solvents are required m typical bimolecular substitutions because ionic substances such as the sodium and potassium salts cited earlier m Table 8 1 are not sufficiently soluble m nonpolar solvents to give a high enough concentration of the nucleophile to allow the reaction to occur at a rapid rate Other than the requirement that the solvent be polar enough to dis solve ionic compounds however the effect of solvent polarity on the rate of 8 2 reactions IS small What is most important is whether or not the polar solvent is protic or aprotic Water (HOH) alcohols (ROH) and carboxylic acids (RCO2H) are classified as polar protic solvents they all have OH groups that allow them to form hydrogen bonds... [Pg.346]

High purity hexafluorozirconic acid and its salts are produced by Advance Research Chemicals of the United States, and Akita and Moritta of Japan. The technical-grade green-colored material is suppHed by Cabot Corp. of the United States. In 1993, the U.S. market for fluorozirconic acid was about 250,000 kg/yr the world market was less than 500,000 kg/yr. A principal part of this production is consumed by the wool, garment, and upholstery industries. The 1993 price varied between 2.4 to 6.6/kg depending on the quaUty and quantity required. Potassium fluorozirconate [16923-95-8], K ZrF, is commercially important the world market is about 750,000 kg/yr. The most important appHcation is as a fire-retardant material in the wool (qv) industry, for the manufacture of garments, upholstery for aeroplane industry, and children s clothes (see Flame retardants). The 1993 unit price was between 5.0 and 6.6/kg. [Pg.263]

The sulfate groups are beUeved to be important in gelation with potassium and in reaction with protein. The 3,6-anhydrogalactose units increase hydrophobicity and reduce solubiUty whereas the sulfate groups increase hydropltilicity and solubiUty. [Pg.433]

Synthesis from Aldehydes and Ketones. Treatment of aldehydes and ketones with potassium cyanide and ammonium carbonate gives hydantoias ia a oae-pot procedure (Bucherer-Bergs reactioa) that proceeds through a complex mechanism (69). Some derivatives, like oximes, semicarbazones, thiosemicarbazones, and others, are also suitable startiag materials. The Bucherer-Bergs and Read hydantoia syntheses give epimeric products when appHed to cycloalkanones, which is of importance ia the stereoselective syathesis of amino acids (69,70). [Pg.254]

The process is shown schematically ia Figure 1, which also shows the conversion to potassium borohydride. Commercial NaBH is97 + % pure yields are better than 90%. Other processes for manufactuting NaBH have been described (27,28), but are not commercially important. [Pg.303]

Sa.lts Salting out metal chlorides from aqueous solutions by the common ion effect upon addition of HCl is utilized in many practical apphcations. Typical data for ferrous chloride [13478-10-9] FeCl2, potassium chloride [7447-40-7] KCl, and NaCl are shown in Table 9. The properties of the FeCl2-HCL-H2 0 system are important to the steel-pickling industry (see Metal SURFACE TREATMENTS Steel). Other metal chlorides that are salted out by the addition of hydrogen chloride to aqueous solutions include those of magnesium, strontium, and barium. [Pg.442]

Country Tartaric acid imports, % Potassium bitartrate imports, %... [Pg.527]

Iodides. Iodides range from the completely ionic such as potassium iodide [7681-11-0] KI, to the covalent such as titanium tetraiodide [7720-83-4J, Til. Commercially, iodides are the most important class of iodine compounds. In general, these are very soluble in water and some are hygroscopic. However, some iodides such as the cuprous, lead, silver and mercurous, are insoluble. [Pg.365]


See other pages where Potassium importance is mentioned: [Pg.200]    [Pg.200]    [Pg.28]    [Pg.301]    [Pg.382]    [Pg.246]    [Pg.422]    [Pg.239]    [Pg.5]    [Pg.346]    [Pg.405]    [Pg.442]    [Pg.67]    [Pg.477]    [Pg.233]    [Pg.236]    [Pg.237]    [Pg.240]    [Pg.242]    [Pg.245]    [Pg.145]    [Pg.283]    [Pg.307]    [Pg.308]    [Pg.460]    [Pg.300]    [Pg.393]   
See also in sourсe #XX -- [ Pg.37 , Pg.39 , Pg.43 ]




SEARCH



Economic Importance of Potassium-Containing Fertilizers

Potassium biological importance

Potassium economic importance

© 2024 chempedia.info