Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael addition-allylic

Torgov introduced an important variation of the Michael addition allylic alcohols are used as vinylogous a -synthons and 1,3-dioxo compounds as d -reagents (S.N. Ananchenko, 1962, 1963 H. Smith, 1964 C. Rufer) 1967). Mild reaction conditions have been successful in the addition of ],3-dioxo compounds to vinyl ketones. Potassium fluoride can act as weakly basic, non-nudeophilic catalyst in such Michael additions under essentially non-acidic and non-basic conditions (Y. Kitabara, 1964). [Pg.71]

The ruthenium complex Cp Ru(bipyridyl)Cl has been developed as a catalyst for the first regioselective tandem Michael addition-allylic alkylation of activated Michael acceptors. The net outcome is the decarboxylative insertion of Michael acceptors into allyl /3-keto esters to produce (215). The reaction combines the generation of Ru-tt-allyl and enolate from (213) the enolate is first added to the Michael acceptor (214) and the resulting species is captured by the Ru-tt-allyl.254... [Pg.339]

Recently, an atom-economic sequential Michael addition/allylation reaction characterized by broad functional group tolerance and mild, neutral reaction conditions was described by the same group (Scheme 12.73) [168]. In this transformation, two different bonds are formed in a decarboxylative two-component reaction with release of CO2 as the sole by-product. Further development led to a three-component reaction, in which CO2 and tert-butyl alcohol are the sole by-products. Besides the... [Pg.965]

Scheme 10 Catalytic enantioselective Michael addition-allylic alkylation cascade... Scheme 10 Catalytic enantioselective Michael addition-allylic alkylation cascade...
Dramatic rate accelerations of [4 + 2]cycloadditions were observed in an inert, extremely polar solvent, namely in5 M solutions oflithium perchlorate in diethyl ether(s 532 g LiC104 per litre ). Diels-Alder additions requiring several days, 10—20 kbar of pressure, and/ or elevated temperatures in apolar solvents are achieved in high yields in some hours at ambient pressure and temperature in this solvent (P.A. Grieco, 1990). Also several other reactions, e.g, allylic rearrangements and Michael additions, can be drastically accelerated by this magic solvent. The diastereoselectivities of the reactions in apolar solvents and in LiClO EtjO are often different or even complementary and become thus steerable. [Pg.86]

The TT-allylpalladium complexes 241 formed from the ally carbonates 240 bearing an anion-stabilizing EWG are converted into the Pd complexes of TMM (trimethylenemethane) as reactive, dipolar intermediates 242 by intramolecular deprotonation with the alkoxide anion, and undergo [3 + 2] cycloaddition to give five-membered ring compounds 244 by Michael addition to an electron-deficient double bond and subsequent intramolecular allylation of the generated carbanion 243. This cycloaddition proceeds under neutral conditions, yielding the functionalized methylenecyclopentanes 244[148], The syn-... [Pg.322]

The decarboxylation of allyl /3-keto carboxylates generates 7r-allylpalladium enolates. Aldol condensation and Michael addition are typical reactions for metal enolates. Actually Pd enolates undergo intramolecular aldol condensation and Michael addition. When an aldehyde group is present in the allyl fi-keto ester 738, intramolecular aldol condensation takes place yielding the cyclic aldol 739 as a main product[463]. At the same time, the diketone 740 is formed as a minor product by /3-eIimination. This is Pd-catalyzed aldol condensation under neutral conditions. The reaction proceeds even in the presence of water, showing that the Pd enolate is not decomposed with water. The spiro-aldol 742 is obtained from 741. Allyl acetates with other EWGs such as allyl malonate, cyanoacetate 743, and sulfonylacetate undergo similar aldol-type cycliza-tions[464]. [Pg.392]

The Pd enolates also undergo intramolecular Michael addition when an enone of suitable size is present in the allyl d-keto ester 744[465]. The main product is the saturated ketone 745, hut the unsaturated ketone 746 and ally-lated product 747 are also obtained as byproducts. The Pd-catalyzed Michael... [Pg.392]

An asymmetric synthesis of estrone begins with an asymmetric Michael addition of lithium enolate (178) to the scalemic sulfoxide (179). Direct treatment of the cmde Michael adduct with y /i7-chloroperbenzoic acid to oxidize the sulfoxide to a sulfone, followed by reductive removal of the bromine affords (180, X = a and PH R = H) in over 90% yield. Similarly to the conversion of (175) to (176), base-catalyzed epimerization of (180) produces an 85% isolated yield of (181, X = /5H R = H). C8 and C14 of (181) have the same relative and absolute stereochemistry as that of the naturally occurring steroids. Methylation of (181) provides (182). A (CH2)2CuLi-induced reductive cleavage of sulfone (182) followed by stereoselective alkylation of the resultant enolate with an allyl bromide yields (183). Ozonolysis of (183) produces (184) (wherein the aldehydric oxygen is by isopropyUdene) in 68% yield. Compound (184) is the optically active form of Ziegler s intermediate (176), and is converted to (+)-estrone in 6.3% overall yield and >95% enantiomeric excess (200). [Pg.436]

The starting illylic rutro compound is obtained by nitranon of 2-methylpropene with NO Subsequent Michael addition to methyl vinyl ketone followed by Pd-catalyzed allylic alkylation affords terpenoids... [Pg.187]

The Ramberg-Backlund reaction has been utilized for the preparation of polyenes. 1,3-Butadienyl allyl sulfones 398 and 399 were transformed into the tri- and tetra-enes 400 and 401 by alkylcuprate addition and the Ramberg-Backlund-type S02 extrusion449. Julia and coworkers450 carried out the Michael addition of various nucleophiles such as ethanol, t-butyl acetoacetate and phenyl thioacetone to allyl dienyl sulfones 402 and then converted them to diallyl sulfones 403. The sulfones were transformed into isoprenoid, 404 by the Ramberg-Backlund reaction. [Pg.652]

Although the unsaturated nitrile oxides 124 can be prepared via the aldoxime route (see Scheme 8), the older procedure suffers from the disadvantage that a tenfold excess of allyl alcohol and two additional steps are required when compared to Scheme 15. Therefore, unsaturated nitro ether 123 that can be prepared by condensation of an aldehyde 120 and a nitro alkane followed by Michael addition of alcohol 122, was a useful precursor to nitrile oxide 124 [381. The nitrile oxide 124 spontaneously cyclized to ether 125. This procedure is particularly suitable for the synthesis of tetrahydrofurans (125a-h) and tetrahydropyrans (125i-k) possessing Ar substituents in 72-95% yield (Table 12). The seven-membered ether 1251 was obtained only in 30% yield on high dilution. The acetylenic nitro ether 126 underwent INOC reaction to provide the isoxazole 127. [Pg.18]

ISOC reaction was employed to synthesize substituted tetrahydrofurans 172 fused to isoxazolines (Scheme 21) [44b]. The silyl nitronates 170 resulted via the nitro ethers 169 from base-mediated Michael addition of allyl alcohols 168 to nitro olefins 167. Cycloaddition of 170 followed by elimination of silanol provided 172. Reactions were conducted in stepwise and one-pot tandem fashion (see Table 16). A terminal olefinic Me substituent increased the rate of cycloaddition (Entry 3), while an internal olefinic Me substituent decreased it (Entry 4). [Pg.25]

Some particular features should be mentioned. Instead of Michael additions, a-nitroolefins are reported to yield allyl sulfones under Pd catalysis (equation 21). Halogenated acceptor-olefins can substitute halogen P to the acceptor by ipso-substitution with sulfinate (equation 22 , equation 23 ) or can lose halogen a to the acceptor in the course of a secondary elimination occurring P to the introduced sulfonyl groups (equation 24). On the other hand, the use of hydrated sodium sulfinates can lead to cleavage at the C=C double bond (equation 25). [Pg.173]

Dithioacetal monoxides undergo Michael addition to acrylonitrile. The addition products are easily converted into y-ketonitriles 382 (equation 221). Benzenesulphinyl allylic carbanions 383 derived from the corresponding allylic sulphoxides react selectively at the y-position with a variety of cycloalkenones to give the l,4-adducts " (equation 222). Recently, Nokami and coworkers have synthesized some prostaglandin analogues via a three-component coupling process involving 1,4-addition of phenylsul-phinyl allylic carbanion (equation 223) . ... [Pg.322]

It was reported that the indium-mediated Michael addition of allyl bromide to l,l-dicyano-2-arylethenes proceeded well in an aqueous medium.55 Similarly, cyclopentadienylindium(I) was reported to add in... [Pg.323]

Another domino cuprate 1,4-addition-initiated threefold anionic domino sequence was developed by Chemla and coworkers (Scheme 2.93) [214]. Michael addition of the a, 3-unsaturated ester 2-387 with PhCu(CN)ZnBr was followed by a carbocyclization to give the zinc species 2-388 which can be intercepted by iodine or an allyl bromide affording substituted pyrrolidines 2-389 and 2-390, respectively. [Pg.110]

The group ofWalborsky probably has described one of the first true anionic/radi-cal domino process in their synthesis of the spirocyclopropyl ether 2-733 starting from the tertiary allylic bromide 2-730 (Scheme 2.161) [369]. The first step is a Michael addition with methoxide which led to the malonate anion 2-731. It follows a displacement of the tertiary bromide and a subsequent ring closure which is thought to involve a SET from the anionic center to the carbon-bromine anti bonding orbital to produce the diradical 2-732 and a bromide anion. An obvious alternative Sn2 halide displacement was excluded due to steric reasons and the ease with which the reaction proceeded. [Pg.159]

A combination of a Tsuji-Trost and a Michael addition was used for the synthesis of (+)-dihydroerythramine 6/1-269, as reported by Desmaele and coworkers [128]. The Pd-catalyzed reaction of the allylic acetate 6/1-267 with the nitromethylarene 6/1-266 in the presence of Cs2C03 as base led to the domino product 6/1-268 as a 4 1 mixture of two diastereomers in 79% yield. Further manipulation of 6/l-268a yielded the desired dihydroerythramine 6/1-269 (Scheme 6/1.70). Interestingly, using the corresponding allylic carbonate without additional base gave the mono-alkylated product only. [Pg.403]

A typical second step after the insertion of CO into aryl or alkenyl-Pd(II) compounds is the addition to alkenes [148]. However, allenes can also be used (as shown in the following examples) where a it-allyl-r 3-Pd-complex is formed as an intermediate which undergoes a nucleophilic substitution. Thus, Alper and coworkers [148], as well as Grigg and coworkers [149], described a Pd-catalyzed transformation of o-iodophenols and o-iodoanilines with allenes in the presence of CO. Reaction of 6/1-310 or 6/1-311 with 6/1-312 in the presence of Pd° under a CO atmosphere (1 atm) led to the chromanones 6/1-314 and quinolones 6/1-315, respectively, via the Jt-allyl-r 3-Pd-complex 6/1-313 (Scheme 6/1.82). The enones obtained can be transformed by a Michael addition with amines, followed by reduction to give y-amino alcohols. Quinolones and chromanones are of interest due to their pronounced biological activity as antibacterials [150], antifungals [151] and neurotrophic factors [152]. [Pg.411]

Michael addition to give the azaheterocycles 7-39 through a favorable 6-exo-trig ring closure (Scheme 7.13). Even highly sensible substrates such as aryl-allyl ethers and amines could be transformed to the desired products in excellent yields. [Pg.502]


See other pages where Michael addition-allylic is mentioned: [Pg.777]    [Pg.8]    [Pg.73]    [Pg.777]    [Pg.8]    [Pg.73]    [Pg.2]    [Pg.32]    [Pg.311]    [Pg.318]    [Pg.480]    [Pg.39]    [Pg.22]    [Pg.478]    [Pg.528]    [Pg.991]    [Pg.173]    [Pg.322]    [Pg.323]    [Pg.641]    [Pg.645]    [Pg.783]    [Pg.323]    [Pg.641]    [Pg.645]    [Pg.647]    [Pg.783]    [Pg.330]    [Pg.512]   


SEARCH



Allyl addition

Allylic addition

Michael addition allylic substitution

Michael addition-allylic alkylation

Michael additions allyl anions

Sulfoxides, allyl Michael addition

© 2024 chempedia.info