Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polysaccharides as adsorbates

The surface of a powdered polysaccharide equilibrated in air is hydrophobic and resistant to wetting—a condition that poses difficulty in dispersal when cereal flour, for example, is mixed with water in the preparation of doughs and batters. Dispersion usually requires a large expenditure of mechanical energy. [Pg.38]

Equilibrium or monolayer adsorption of a polysaccharide as adsorbate is unlikely, except in the latter process, as a result of chemisorption, whereby valence forces extend to no more than one molecular distance. Instead, the first layer of polysaccharide provides an adsorption site for the second layer, ad infinitum, in a nonequilibrium process, until phase inversion. Macromolecules including polysaccharides do not desorb they accumulate in multilayers with an increased rate of adsorption at higher temperatures. [Pg.38]

The Freundlich equation, empirical in origin, relates positive adsorption to a power function of c, as follows  [Pg.39]

The Brunauer-Emmett-Teller equation governing multilayer adsorption shows inflections above monolayer saturation as the adsorbate accumulates on a surface over an extended interval. Heller (1966) factored in the time variable  [Pg.39]

As adsorbate, the polysaccharide dct is sensitive to the DP and polydis-persity (Cohen Stuart et al., 1982). Higher DP polysaccharides are less kinetically active, are therefore slower to accumulate than lower DP polysaccharides because of the time taken for surface orientation, and are thus more inclined to stay adsorbed longer and reach higher concentrations. Agitation increases the rate of physical adsorption. From the foregoing discussion on polysaccharide dispersibility, it is safe to conclude that multilayer adsorption is antecedent to polysaccharide phase inversion and in some instances to sol-gel transition. [Pg.39]


Polysaccharides that have been modified chemically, or altered physically, have been used as adsorbents for affinity chromatography. The modification of the structure of polysaccharides has been achieved by introducing cross-linkages between the chains of the polymer and bifunctional reagents. The alteration of the properties of polysaccharides by physical means can be effected by embedding the polysaccharide in a network of the support material. The molecular in-... [Pg.407]

Polysaccharides interfaced with water act as adsorbents on which surface accumulations of solute lower the interfacial tension. The polysaccharide-water interface is a dynamic site of competing forces. Water retains heat longer than most other solvents. The rate of accumulation of micromolecules and microions on the solid surface is directly proportional to their solution concentration and inversely proportional to temperature. As adsorbates, micromolecules and microions ordinarily adsorb to an equilibrium concentration in a monolayer (positive adsorption) process they desorb into the outer volume in a negative adsorption process. The adsorption-desorption response to temperature of macromolecules—including polysaccharides —is opposite that of micromolecules and microions. As adsorbate, polysaccharides undergo a nonequilibrium, multilayer accumulation of like macromolecules. [Pg.40]

From the list in Table 3.9, cellulose and amylose-based phases are by far the most often used in preparative and, especially, SMB applications. These adsorbents offer good productivities because of their high loadabilities (Fig. 3.22). In addition, the four most commonly used CSP of this type separate a broad range of different race-mates. The major problem of these adsorbents is their limited solvent stability, especially towards medium-polar solvents such as acetone, ethyl acetate or dioxane. In the past their use in conjunction with aqueous mobile phases was not recommended by the manufacturer as well. However, this limitation was successfully overcome by recent studies, in which amylose- and cellulose-based CSPs are transferred to the reversed phase (RP) mode with aqueous mobile phases. The first results for the use of polysaccharide-type phases with aqueous solvents were reported by Ishikawa and Shibata (1993) and McCarthy (1994). The stability of the adsorbent after switching to RP conditions has been reported by Kummer et al. (1996) to be at least 11 months and by Ning (1998) to be 3 years. No peak deviation is observed after switching to RP mode. Novel developments have led to polysaccharide-based adsorbents dedicated to use with nearly all organic solvents (Cox and Amoss, 2004). [Pg.83]

A polysaccharide can be added as a component in a protein system to produce a protein-polysaccharide composite structure. Tolstoguzov (2003) reviewed the main function of protein and polysaccharide in protein-polysaccharide food formulation. Generally, polysaccharides have less surface activity in comparison to proteins. This inferiority is related to their low flexibility and monotonic repetition of the monomer units in the backbone. The low surface activity of polysaccharides results in their inability to form a primary adsorbed layer in the system. The nature of interactions between polysaccharides and adsorbed proteins, as well as their influence on colloid stability, can either stabilize or destabilize the emulsions. Attractive protein-polysaccharide interactions can enhance the emulsion stability by forming a thicker and stronger steric-stabilizing layer. In contrast, the attractive interactions... [Pg.276]

G. Crini, "Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment". Progress in Polymer Science, Vol. 30, No 1, pp. 38-70,2005. [Pg.522]

It is important to note that the liposomes obtained were surrounded by a larger amount of the polysaccharides than the amount calculated by assuming that the polysaccharide chains were spread flat in single layers over the outer surface of multilamellar liposomes. We propose a binding mode between liposomes and polysaccharides as illustrated in Figure 11. This conformational model can be regarded as a modification of the "loop-train-tail" model that has been widely accepted from both theoretical and experimental view points as the conformational model for macromolecules adsorbed on an interface. [Pg.176]

Separation of enantiomers by physical or chemical methods requires the use of a chiral material, reagent, or catalyst. Both natural materials, such as polysaccharides and proteins, and solids that have been synthetically modified to incorporate chiral structures have been developed for use in separation of enantiomers by HPLC. The use of a chiral stationary phase makes the interactions between the two enantiomers with the adsorbent nonidentical and thus establishes a different rate of elution through the column. The interactions typically include hydrogen bonding, dipolar interactions, and n-n interactions. These attractive interactions may be disturbed by steric repulsions, and frequently the basis of enantioselectivity is a better steric fit for one of the two enantiomers. ... [Pg.89]

Attachment There is a high specificity in the interaction between virus and host. The most common basis for host specificity involves the attachment process. The virus particle itself has one or more proteins on the outside which interact with specific cell surface components called receptors. The receptors on the cell surface are normal surface components of the host, such as proteins, polysaccharides, or lipoprotein-polysaccharide complexes, to which the virus particle attaches. In the absence of the receptor site, the virus cannot adsorb, and hence cannot infect. If the receptor site is altered, the host may become resistant to virus infection. However, mutants of the virus can also arise which are able to adsorb to resistant hosts. [Pg.124]

Fig. 3.5 Representation of a scheme of an experiment (upper set of drawings) and the obtained experimental results presented as AFM images (middle part) and cross-sectional profiles (bottom) that provides evidence of silica nucleation and shell formation on biopolymer macromolecules. Scheme of experiment. This includes the following main steps. 1. Protection of the mica surface against silica precipitation. It was covered with a fatty (ara-chidic) acid monolayer transferred from a water substrate with the Langmuir-Blodgett technique. This made the mica surface hydrophobic because of the orientation of the acid molecules with their hydrocarbon chains pointing outwards. 2. Adsorption of carbohydrate macromolecules. Hydrophobically modified cationic hydroxyethylcellulose was adsorbed from an aqueous solution. Hydrocarbon chains of polysaccharide served as anchors to fix the biomacromolecules firmly onto the acid monolayer. 3. Surface treatment by silica precursor. The mica covered with an acid mono-... Fig. 3.5 Representation of a scheme of an experiment (upper set of drawings) and the obtained experimental results presented as AFM images (middle part) and cross-sectional profiles (bottom) that provides evidence of silica nucleation and shell formation on biopolymer macromolecules. Scheme of experiment. This includes the following main steps. 1. Protection of the mica surface against silica precipitation. It was covered with a fatty (ara-chidic) acid monolayer transferred from a water substrate with the Langmuir-Blodgett technique. This made the mica surface hydrophobic because of the orientation of the acid molecules with their hydrocarbon chains pointing outwards. 2. Adsorption of carbohydrate macromolecules. Hydrophobically modified cationic hydroxyethylcellulose was adsorbed from an aqueous solution. Hydrocarbon chains of polysaccharide served as anchors to fix the biomacromolecules firmly onto the acid monolayer. 3. Surface treatment by silica precursor. The mica covered with an acid mono-...

See other pages where Polysaccharides as adsorbates is mentioned: [Pg.38]    [Pg.38]    [Pg.39]    [Pg.38]    [Pg.38]    [Pg.39]    [Pg.419]    [Pg.216]    [Pg.1]    [Pg.116]    [Pg.181]    [Pg.697]    [Pg.269]    [Pg.488]    [Pg.601]    [Pg.31]    [Pg.187]    [Pg.216]    [Pg.366]    [Pg.42]    [Pg.133]    [Pg.806]    [Pg.206]    [Pg.212]    [Pg.535]    [Pg.220]    [Pg.5]    [Pg.145]    [Pg.94]    [Pg.95]    [Pg.22]    [Pg.106]   
See also in sourсe #XX -- [ Pg.38 , Pg.39 ]




SEARCH



Adsorbates, polysaccharides

Adsorbents, polysaccharides

Polysaccharides as adsorbents

Polysaccharides as adsorbents

© 2024 chempedia.info