Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymethyl methacrylate properties

All of the eommereial alkyl eyanoaerylate monomers are low-viseosity liquids, and for some applications this can be an advantage. However, there are instances where a viseous liquid or a gel adhesive would be preferred, sueh as for application to a vertical surface or on porous substrates. A variety of viscosity control agents, depending upon the desired properties, have been added to increase the viscosity of instant adhesives [21]. The materials, which have been utilized, include polymethyl methacrylate, hydrophobic silica, hydrophobic alumina, treated quartz, polyethyl cyanoacrylate, cellulose esters, polycarbonates, and carbon black. For example, the addition of 5-10% of amorphous, non-crystalline, fumed silica to ethyl cyanoacrylate changes the monomer viscosity from a 2-cps liquid to a gelled material [22]. Because of the sensitivity of cyanoacrylate esters to basic materials, some additives require treatment with an acid to prevent premature gelation of the product. [Pg.856]

Polymethyl Methacrylate (PMMA), This material has exceptional optical clarity and resistance to outdoor exposure. It is resistant to alkalis, detergents, oils and dilute acids but is attacked by most solvents. Its peculiar property of total internal reflection is useful in advertising signs and some medical applications. [Pg.15]

The data provided by Toyota Research Group of Japan on polyamide-MMT nanocomposites indicate tensile strength improvements of approximately 40%-50% at 23°C and modulus improvement of about 70% at the same temperature. Heat distortion temperature has been shown to increase from 65°C for the unmodified polyamide to 152°C for the nanoclay-modified material, all the above having been achieved with just a 5% loading of MMT clay. Similar mechanical property improvements were presented for polymethyl methacrylate-clay hybrids [27]. [Pg.34]

The properties of polymers may be improved by the presence of appropriately selected additives. With the exception of some cast plastics, such as polymethyl methacrylate (PMMA), and some fibers, such as unpigmented cotton, most commercial polymers are mixtures of the polymer with one or more additives. [Pg.121]

Methyl methacrylate is only one of a family of monomers, including the various esters of acrylic, methacrylic, and ethacrylic acids, which are polymerized to produce the thermoplastic resins known as the acrylates. A wide variety of reactions and starting materials may be utilized for their production however, the principal commercial product is polymethyl methacrylate, sold by Du Pont and Rohm Haas under the trade names of Lucite and Plexiglas, respectively. These materials were introduced to the United States market in 1936 (44) and have received widespread acceptance due principally to their outstanding optical properties. Production in 1949 was reported as about 22,000,000 to 25,000,000 pounds and peak wartime capacity was above30,000,000 pounds. While this can account for only about 2% of the current production of propylene for chemical purposes, the acrylate resins are of considerable commercial importance as they are sold at a relatively high price and are the only materials available that will meet the requirements for certain military and civilian products. [Pg.318]

Onogi,S., Masuda,T., Ibaragi,T. Rheological properties of polymethyl methacrylate and polyvinyl acetate in the molten state. Kolloid-Z. Z. Polymere 222, 110-124... [Pg.170]

Pennline, H. W., Graessley, W. W. Flow properties of polymethyl methacrylate solutions. Paper presented at American Physical Society Meeting, San Diego, March 1973. [Pg.172]

Acrylic. Acrylic resins (polymethyl methacrylate) have exceptional optical clarity and good weather resistance, strength, electrical properties, and chemical resistance. They have low water absorption characteristics. However, acrylics are attacked by strong solvents, gasoline, acetone, and similar organic fluids. [Pg.369]

The acrylic plastics use the term acryl such as polymethyl methacrylate (PMMA), polyacrylic acid, polymethacrytic acid, poly-R acrylate, poly-R methacrylate, polymethylacrylate, polyethylmethacrylate, and cyanoacrylate plastics. PMMA is the major and most important homopolymer in the series of acrylics with a sufficient high glass transition temperature to form useful products. Repeat units of the other types are used. Ethylacrylate repeat units form the major component in acrylate rubbers. PMMAs have high optical clarity, excellent weatherability, very broad color range, and hardest surface of any untreated thermoplastic. Chemical, thermal and impact properties are good to fair. Acrylics will fail in a brittle manner, independent of the temperature. They will suffer crazing when loaded at stress about halfway to the failure level. This effect is enhanced by the presence of solvents. [Pg.67]

Literature continues to be rather extensive on this subject since the 1930s. A summarization is provided in this section. Products fabricated include sheets, films, rods and tubes, and embedment. Acrylic castings usually consist of polymethyl methacrylate (PMMA) or copolymers of this ester as the major component with small amounts of other monomers to modify the properties (Chapter 2). Adding acrylates or higher methacrylates lowers the heat deflection temperature and hardness and improves thermoformability and solvent cementing capability, with some loss in resistance to weathering. Dimethacrylates or other crosslinking monomers increase the resistance to solvents and moisture. [Pg.401]

On the other hand, in the treatments involving no cell wall modifications, the modification of mechanical properties is due only to the nonzero value of Vp and Ep. For the simulation, rheological properties of polymethyl methacrylate (Ep = 4.5 GPa, tan 8p = l/(0Tp = 0.065 at a)/2 tt = 250 Hz [13]) were used. Line (a) in Fig. 6 shows the effect of increasing values. The closed circle on line (a) corresponds to the average experimental Vp value (= 0.5 for a WPG = 126 % and = 1.2). This theoretical prediction shows good agreement with the experimental shift shown on the same graph. [Pg.326]

Alkyl a-acetoxyacrylate intermediates were prepared by condensing pyruvate derivatives with acetic anhydride and then free radically converting them into the corresponding homo- or copolymers. All copolymers had thermal properties that were superior to that of polymethyl methacrylate. In addition poly(ethyl a-acetoxy-acrylate) homopolymers were injection moldable at 250°C. [Pg.687]

We briefly describe here the results obtained from studies of copper, nickel and chromium overlayers deposited on polystyrene, polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyvinyl acetate and polymethyl methacrylate. Using X-ray photoemission spectroscopy we measured significant variations in the core binding energies and lineshapes as we varied both the metal and the substrate atoms. These changes can be related to both differences between the intrinsic properties of the metal atoms as well as to differences in the interactions with the substrates. In the following sections we describe the details of... [Pg.339]

Since the X-ray-opaque filler (e.g., Zr02) is one of the basic components of bone cement, the physical properties of bone cement should be treated as a composite material of polymethyl methacrylate (PMMA) and fillers. The physical properties of composite materials depend on the matrices, fillers, and interfaces between them. The most desirable situation may be the combination of good properties of each component material. For this purpose, the role of interface is very important for an efficient stress transfer from the matrix to the fillers [41,42]. [Pg.651]

Polysulfone membranes were prepared from 12.5, 13.75, and 15% (wt. %) polysulfone solution in dimethylformamide and formed on the surface of porous, sintered polymethyl methacrylate bars. An effective surface of each membrane was 49.2 cm. The effect of some casting parameters (composition and the temperature of the casting solution, time of solvent evaporation) and the pressure applied on the transport and separation properties of the membranes were analyzed. The experiments were carried out in a 1.2 dm pressure apparatus with continuous circulation of the permeate between feeding tank and the apparatus. It was found that membranes cast from 12.5% polysulfone solution of a temperature of 298 K with no solvent evaporation displayed the best properties. After 160 hours of operation at 0.18 MPa, the membranes in question showed an ability of a 97 to 99% rejection of 781.2 molecular-weight dye. The volume flux of the dye solution varied from 0.6 to 0.8m /m per day. [Pg.387]

Finally, the diversity of the bulk properties of proteins is unequaled in any other known polymer class. Proteins form materials as diverse as the hard substance of nails and hair, the transparent substance of the lens, the elastic substance of collagen, and so on. Some of tliese properties are equaled by polymers in other classes keratin by the carbohydrate polymer chitin (A-acyl-o-glucosamine), the transparency of the lens proteins by the polymer Perspex (polymethyl methacrylate), the toughness and elasticity of collagen by the polyamide nylon. But no single polymer class has demonstrated such a variety of diverse bulk properties. The compaction of so many diverse bulk properties into one polymer class, polypeptides composed of the twenty proteinaceous amino acids, obviously contributes greatly to their biological fitness. [Pg.272]

In this study, we discussed the graded and miscible blend of polyvinyl chloride(PVC)/ polymethacrylate(polymethyl methacrylate(PMMA) or polyhexyl methacrylate(PHMA)) by a dissolution-diffusion method, and characterized graded structures of the blends by measuring FTIR spectra and Raman microscopic spectra, and thermal behaviors around the glass transition temperature(Tg) by DSC method, or by SEM-EDX observation. Finally, we measured several types of mechanical properties and thermal shock resistance of the graded polymer blends. [Pg.761]

Figure 5-13. Temperature dependence of tan 8 for polymethyl methacrylate showing the a and P relaxations. [After L. E. Nielsen, Mechanical Properties of Polymers, Reinhold, new York, 1962, p. 178.]... Figure 5-13. Temperature dependence of tan 8 for polymethyl methacrylate showing the a and P relaxations. [After L. E. Nielsen, Mechanical Properties of Polymers, Reinhold, new York, 1962, p. 178.]...
In addition to polymer content additives, and temperature, the nature of the solvent can have a marked influence on the transport properties of the resulting membrane. Eirich et al9 discovered that regardless of the nature of the polymer, the highest porosity membranes were made from casting solutions utilizing solvents with high solubility parameters. Eirich investigated cellulose acetate, polystyrene, polyvinyl chloride, polyvinylidene difluoride, polycarbonate, polymethyl methacrylate, polyacrylonitrile, and polyacrylonitrile/polyvinyl... [Pg.146]


See other pages where Polymethyl methacrylate properties is mentioned: [Pg.424]    [Pg.170]    [Pg.21]    [Pg.434]    [Pg.230]    [Pg.90]    [Pg.288]    [Pg.159]    [Pg.190]    [Pg.354]    [Pg.96]    [Pg.169]    [Pg.106]    [Pg.2351]    [Pg.123]    [Pg.65]    [Pg.263]    [Pg.155]    [Pg.145]    [Pg.420]    [Pg.98]    [Pg.210]    [Pg.147]    [Pg.713]    [Pg.278]    [Pg.529]    [Pg.674]    [Pg.358]    [Pg.359]    [Pg.674]   
See also in sourсe #XX -- [ Pg.159 ]

See also in sourсe #XX -- [ Pg.159 ]

See also in sourсe #XX -- [ Pg.266 ]




SEARCH



Polymethyl methacrylate electrical properties

Polymethyl methacrylate mechanical properties

Polymethyl methacrylate optical properties

Polymethyl methacrylate rheological properties

Polymethylated

© 2024 chempedia.info