Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene-ethyl acrylate

The pyrolysis chromatogram of polyethylene-ethyl acrylate at 475 C shows one principal peak due to ethanol. No variation in peak areas is noted in the temperature range 300-480 °C. Table 3.13 shows the analysis of 0.05 g samples of polyethylene-ethyl acrylate and polyethylene-vinyl acetate obtained at a pyrolysis temperature of 475 °C. [Pg.116]

Barrall and co-workers [46] described a pyrolysis-gas chromatographic procedure for the analysis of polyethylene-ethyl acrylate and polyethylene-vinyl acetate copolymers and physical mixtures thereof. They used a specially constructed pyrolysis chamber as described by Porter and co-workers [47]. Less than 30 seconds is required for the sample chamber to assume block temperature. This system has the advantages of speed of sample introduction, controlled pyrolysis temperature, and complete exclusion of air from the pyrolysis chamber. The pyrolysis chromatograph of poly(ethylene-vinyl acetate) contains two principal peaks the first is methane and the second is acetic acid ... [Pg.73]

Table 3.6 Pyrolysis results on physical mixtures of polyethylene-ethyl acrylate and polyethylene-vinyl acetate ... Table 3.6 Pyrolysis results on physical mixtures of polyethylene-ethyl acrylate and polyethylene-vinyl acetate ...
Figure 3.6 NMR spectrum, polyethylene ethyl acrylate copolymer. Reprinted with permission from R.S. Porter, S.W. Nicksic and J.F. Johnson, Analytical Chemistry, 1963, 3S, 12, 1948. 1963, ACS) [74]... Figure 3.6 NMR spectrum, polyethylene ethyl acrylate copolymer. Reprinted with permission from R.S. Porter, S.W. Nicksic and J.F. Johnson, Analytical Chemistry, 1963, 3S, 12, 1948. 1963, ACS) [74]...
In order to improve the physical properties of HDPE and LDPE, copolymers of ethylene and small amounts of other monomers such as higher olefins, ethyl acrylate, maleic anhydride, vinyl acetate, or acryUc acid are added to the polyethylene. Eor example, linear low density polyethylene (LLDPE), although linear, has a significant number of branches introduced by using comonomers such as 1-butene or 1-octene. The linearity provides strength, whereas branching provides toughness. [Pg.432]

Polymerization processes are characterized by extremes. Industrial products are mixtures with molecular weights of lO" to 10. In a particular polymerization of styrene the viscosity increased by a fac tor of lO " as conversion went from 0 to 60 percent. The adiabatic reaction temperature for complete polymerization of ethylene is 1,800 K (3,240 R). Heat transfer coefficients in stirred tanks with high viscosities can be as low as 25 W/(m °C) (16.2 Btu/[h fH °F]). Reaction times for butadiene-styrene rubbers are 8 to 12 h polyethylene molecules continue to grow lor 30 min whereas ethyl acrylate in 20% emulsion reacts in less than 1 min, so monomer must be added gradually to keep the temperature within hmits. Initiators of the chain reactions have concentration of 10" g mol/L so they are highly sensitive to poisons and impurities. [Pg.2102]

Processability Styrene-acrylonitrile, methacrylate-butadiene-styrene, chlorinated polyethylene, PVC-ethyl acrylate, ethylene-vinyl acetate, chlorinated polyoxymethylenes (acetals)... [Pg.347]

A number of other polymers have the characteristics of TPE and some are available commercially, such as (1) 1,2-polybutadiene, (2) tran -polyisoprene (PI), (3) modified polyethylene (PE) (e.g., ethylene vinyl acetate [EVA] and ethylene ethyl acrylate [EEA]), (4) nonhydrocarbon elastomer-based TPEs, (5) metallocene elastomers/TPEs (MEs/TPEs), and (6) graft copolymeric TPEs. [Pg.104]

IR absorption spectra were superimposable onto those of the physical mixtures of the respective homopolymers. The molar ratio of the poly(MMA) and polyethylene blocks, however, decreased as the Mn of the prepolymer increased, especially when it exceeded ca. 12 000 at which polyethylene began precipitating as fine colorless particles. It is noteworthy that smooth block copolymerization of ethyl acrylate or methyl acrylate to the growing polyethylene chain (Mn = 6 600-24 800) can be realized by the sequential addition of the two monomers. [Pg.97]

The majority of plasticiser consumption is in CR and NBR. Plasticisers are also technically important in chlorosulphonated polyethylene, hydrogenated nitrile, ethyl acrylate copolymer, epichlorohydrin copolymer and ethylene-acrylic terpolymer. At around 10 kt/annum (Europe), total consumption of plasticisers is on a much smaller scale than the process oils used in hydrocarbon rubbers. Typical addition levels are below 20 phr. [Pg.156]

Tphis paper is concerned with the effect of ionizing radiation on the physical and mechanical properties of copolymers of ethylene with alkyl acrylates, such as ethyl acrylate, butyl acrylate, and 2-ethvlhexyl acrylate (J, 2, 3). These polymers are made by the free radical copolymerization of ethylene under high pressure with alkyl esters of acrylic acid (9). They are more flexible than polyethylene and because of the polar nature of the comonomer, they are more compatible with fillers and with other polymers than is polyethylene. [Pg.81]

Because of their lower level of crystallinity these copolymeis soften at lower temperatures than polyethylene. Table I compares the torsional stiffness at various temperatures of an 18% ethyl acrylate-82 % ethylene copolymer with that of a 21,000 molecular weight, 0.918 density polyethylene made by high pressure polymerization (Bakelite DYNH, Union Carbide Corp.). [Pg.81]

HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HNS NTO NTO/HMX NTO/HMX NTO/HMX PETN PETN PETN PETN PETN PETN PETN PETN PETN PETN RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX TATB/HMX Cariflex (thermoplastic elastomer) Hydroxy-terminated polybutadiene (polyurethane) Hydroxy-terminated polyester Kraton (block copolymer of styrene and ethylene-butylene) Nylon (polyamide) Polyester resin-styrene Polyethylene Polyurethane Poly(vinyl) alcohol Poly(vinyl) butyral resin Teflon (polytetrafluoroethylene) Viton (fluoroelastomer) Teflon (polytetrafluoroethylene) Cariflex (block copolymer of butadiene-styrene) Cariflex (block copolymer of butadiene-styrene) Estane (polyester polyurethane copolymer) Hytemp (thermoplastic elastomer) Butyl rubber with acetyl tributylcitrate Epoxy resin-diethylenetriamine Kraton (block copolymer of styrene and ethylene-butylene) Latex with bis-(2-ethylhexyl adipate) Nylon (polyamide) Polyester and styrene copolymer Poly(ethyl acrylate) with dibutyl phthalate Silicone rubber Viton (fluoroelastomer) Teflon (polytetrafluoroethylene) Epoxy ether Exon (polychlorotrifluoroethylene/vinylidine chloride) Hydroxy-terminated polybutadiene (polyurethane) Kel-F (polychlorotrifluoroethylene) Nylon (polyamide) Nylon and aluminium Nitro-fluoroalkyl epoxides Polyacrylate and paraffin Polyamide resin Polyisobutylene/Teflon (polytetrafluoroethylene) Polyester Polystyrene Teflon (polytetrafluoroethylene) Kraton (block copolymer of styrene and ethylene-butylene)... [Pg.12]

ABA ABS ABS-PC ABS-PVC ACM ACS AES AMMA AN APET APP ASA BR BS CA CAB CAP CN CP CPE CPET CPP CPVC CR CTA DAM DAP DMT ECTFE EEA EMA EMAA EMAC EMPP EnBA EP EPM ESI EVA(C) EVOH FEP HDI HDPE HIPS HMDI IPI LDPE LLDPE MBS Acrylonitrile-butadiene-acrylate Acrylonitrile-butadiene-styrene copolymer Acrylonitrile-butadiene-styrene-polycarbonate alloy Acrylonitrile-butadiene-styrene-poly(vinyl chloride) alloy Acrylic acid ester rubber Acrylonitrile-chlorinated pe-styrene Acrylonitrile-ethylene-propylene-styrene Acrylonitrile-methyl methacrylate Acrylonitrile Amorphous polyethylene terephthalate Atactic polypropylene Acrylic-styrene-acrylonitrile Butadiene rubber Butadiene styrene rubber Cellulose acetate Cellulose acetate-butyrate Cellulose acetate-propionate Cellulose nitrate Cellulose propionate Chlorinated polyethylene Crystalline polyethylene terephthalate Cast polypropylene Chlorinated polyvinyl chloride Chloroprene rubber Cellulose triacetate Diallyl maleate Diallyl phthalate Terephthalic acid, dimethyl ester Ethylene-chlorotrifluoroethylene copolymer Ethylene-ethyl acrylate Ethylene-methyl acrylate Ethylene methacrylic acid Ethylene-methyl acrylate copolymer Elastomer modified polypropylene Ethylene normal butyl acrylate Epoxy resin, also ethylene-propylene Ethylene-propylene rubber Ethylene-styrene copolymers Polyethylene-vinyl acetate Polyethylene-vinyl alcohol copolymers Fluorinated ethylene-propylene copolymers Hexamethylene diisocyanate High-density polyethylene High-impact polystyrene Diisocyanato dicyclohexylmethane Isophorone diisocyanate Low-density polyethylene Linear low-density polyethylene Methacrylate-butadiene-styrene... [Pg.958]

McNeill, I.C. and Mohammed, M.H., A comparison of the thermal degradation behaviour of ethylene-ethyl acrylate copolymer, low density polyethylene and poly(ethyl acrylate), Polym. Deg. Stab., 1995,48, 175-187. [Pg.806]

Ethylene-ethyl acrylate copolymers can produce very tough flexible materials and can vary from very rubbering low temperature melting products to polyethylene-like materials. EEA is used as a hot melt adhesive, for disposable gloves, tubing and sheeting. [Pg.190]


See other pages where Polyethylene-ethyl acrylate is mentioned: [Pg.591]    [Pg.80]    [Pg.313]    [Pg.591]    [Pg.80]    [Pg.313]    [Pg.133]    [Pg.464]    [Pg.53]    [Pg.730]    [Pg.260]    [Pg.58]    [Pg.82]    [Pg.84]    [Pg.85]    [Pg.1339]    [Pg.167]    [Pg.790]    [Pg.23]    [Pg.2113]    [Pg.20]    [Pg.365]    [Pg.307]    [Pg.218]    [Pg.2099]   
See also in sourсe #XX -- [ Pg.98 , Pg.222 ]




SEARCH



Acrylates ethyl acrylate

Polyethylene acrylate

© 2024 chempedia.info