Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyamides chemical structure

FIGURE S.1 Chemical structure of block copolymeric thermoplastic elastomers (TPEs) (a) styrenic, (b) COPE, (c) thermoplastic pol)oirethane, and (d) thermoplastic polyamide. [Pg.106]

The family of polymers that we refer to as nylons consists of molecules composed of amide groups alternating with short runs of methylene units. These molecules are also known as polyamides, which may be shortened to PA. The generic chemical structure of a nylon molecule is shown in Fig. 23.1. Variations on this basic structure include the length of the polymethylene sequences and the orientation of the amide groups relative to their neighbors. Figure 23.2 shows the chemical structures of nylon 6 and nylon 66, which are the two most common types of nylon. [Pg.357]

Other commercially important polyamides include nylon 11, nylon 12, nylon 46, nylon 610 ( nylon six ten ) and nylon 612 ( nylon six twelve ), the chemical structures of which are shown in Fig. 23.5. [Pg.359]

Polyamides are macromolecules with acidamide units —CONH—, where the chemical structure of the other parts of the monomers can be aliphatic and/or aromatic. Similar structures are found in nature, for example, polypeptides. Although in principle a large number of potential polyamide structures can be produced, only a few polyamides are produced in industrial scale. [Pg.407]

There are two different oligomer series present in all spectra. The oligomer series can be identified by calculating the masses of the end groups and assigning them to specific chemical structures (Pasch and Schrepp, 2003 Weidner et al., 2004). In the present example, the two species are the propionic amide-acid (R-am-ac) and the propionic amide-propionic amide polyamides (R-am-am-R). The use of MALDI-TOF MS as a structure-sensitive detector allows the resolution to be indirectly enhanced since several species coelute, as shown in Fig. 17.21. The polarity of the... [Pg.412]

Telechelic polymers rank among the oldest designed precursors. The position of reactive groups at the ends of a sequence of repeating units makes it possible to incorporate various chemical structures into the network (polyether, polyester, polyamide, aliphatic, cycloaliphatic or aromatic hydrocarbon, etc.). The cross-linking density can be controlled by the length of precursor chain and functionality of the crosslinker, by molar ratio of functional groups, or by addition of a monofunctional component. Formation of elastically inactive loops is usually weak. Typical polyurethane systems composed of a macromolecular triol and a diisocyanate are statistically simple and when different theories listed above are... [Pg.131]

PTT, with three methylene units in its glycol moiety, is called an odd-numbered polyester. It is often compared to the even-numbered polyesters such as PET and PBT for the odd-even effect on their properties. Although this effect is well established for many polycondensation polymers such as polyamides, where the number of methylene units in the chemical structures determines the extent of hydrogen bonding between neighboring chains and thus their polymer properties, neighboring chain interactions in polyesters are weak dispersive, dipole interactions. We have found that many PET, PTT and PBT properties do not follow the odd-even effect. While the PTT heat of fusion and glass transition temperature have values between those of PET and PBT, properties such as modulus... [Pg.368]

Novel pyranoanthocyanins have also been isolated and identified in blackcurrant (Ribes nigrum) seed using HPLC, 2D NMR and ES-MS. Blackcurrant seeds were extracted with acetone-water (70 30, v/v) and the components of the extract were separated in a polyamide column followed by HPLC-DAD. The new pigments were finally separated in an MCI-HP20 column. The chemical structures of anthocyanins 1-2 and the novel pyranoanthocyanins 3-6 with the pyrano[4,3,2-de]-l-bcn/opyrylium core structure are shown in Fig. 2.110. It was stated that the analytical method developed separated well the novel pyranoanthocyanins [245],... [Pg.266]

Nylon (polyamide fibers). The chemical structure of the nylon fiber looks just like the nylon resin. The polymerization processes are the same the numbering systems are the same and the two most important nylon fibers are the same nylon, 6 and 66. The difference is the length of the molecule in comparison to the cross-section. Thats regulated by the polymerization process conditions. [Pg.370]

Note 1 In most cases (e.g., in vinyl polymers, polyamides) degradation is accompanied by a decrease in molar mass. In some cases (e.g., in polymers with aromatic rings in the main chain), degradation means changes in chemical structure. It can also be accompanied by cross-linking. [Pg.240]

The photo-cross-linkability of a polymer depends not only on its chemical structure, but also on its molecular weight and the ordering of the polymer segments. Vinyl polymers, such as PE, PP, polystyrene, polyacrylates, and PVC, predominantly cross-link, whereas vinylidene polymers (polyisobutylene, poly-2-methylstyrene, polymethacrylates, and poly vinylidene chloride) tend to degrade. Likewise, polymers formed from diene monomers and linear condensation products, such as polyesters and polyamides, cross-link easily, whereas cellulose and cellulose derivatives degrade easily. ... [Pg.80]

Transient Tms have been observed in other systems (i.e. polyimides) and appear to be due to synthetic conditions coupled with chemical structure. Under the same synthetic conditions, polymers of certain chemical structures form transient crystalline phases whereas others do not For example, when the polyamide acid from the reaction of 3,3, 4,4 -benzophenonetetracarboxylic di-... [Pg.89]

Polyamides and their analogue are also effective for the selective membranes and there have been developed many kinds of permselective membranes. In early 1960 s, du Pont started to investigate the membranes for demineralization of water by reverse osmosis. After screening polymers, aromatic polyamides and polyhydrazides were shown to have superior properties9-11. In the present review various polyamides and their analogue are in focus as barrier materials for membranes, and their permeative characteristics will be discussed from the view point of their chemical structures. [Pg.64]

Nylon-6,6 and nylon-6 have competed successfully in the marketplace since their respective commercial introductions in 1939 and 1941, and in the 1990s share, about equally, 90% of the total polyamide market. Their chemical and physical properties are almost identical, as the similarity of their chemical structure might suggest the amide functions are oriented in the same direction along the polymer chain for nylon-6, but are alternating in direction for nylon-6,6. [Pg.234]

The curves shown in Fig. 81 are quite similar to those observed in the case of fracture of aryl-aliphatic polyamides (Sect. 5.3). However, in the latter system, a large range of MWs and chemical structures are available, allowing a detailed analysis of the observed behaviours. For these reasons, the analysis of fracture results for BPA-PC takes advantage of those on aryl-aliphatic polyamides. [Pg.313]

In this regime, corresponding to temperature ranges b and c, analysis of the chemical structure effect requires taking into account the ratios Mw/Me and Mn/Me. In all cases, only polyamide samples with a large enough MW to present the temperature range b are discussed. [Pg.344]

The membranes under study are thin-film composite membranes composed of two layers as illustrated in Fig. 3 a thin polyamide film as active layer and a large mesoporous polysulphone as the support layer. The three studied membranes are 2 NF membranes, noted NF90, NF270 and a low-polarization reverse osmosis (LPRO) membrane, noted BW30. All membranes were purchased from Filmtec (DOW, USA) the specifications of the membranes are given in Table 2. The chemical structures of the support and active layer materials are reported in Fig. 4 [86], Polyamide material is the more used but some authors have reported results... [Pg.63]

The manufacture of the large variety of polyamides (commonly referred to as nylons) occurs through polycondensation of amino carboxylic acids (or functional derivatives of them, e.g. lactams) and from diamines and dicarboxylic acids. Labeling the amino groups with A and the carboxyl groups with B allows differentiation of the different chemical structures between the two types AB (from amino carboxylic acids) and AA-BB (from diamines and dicarboxylic acids). The number of C atoms in the monomers acts as a code number for the identification of the polyamides. The polycaprolactam manufactured from caprolactam (type AB) is then called polyamide 6 (PA 6). The number of carbon atoms in the diamine is given first for type AA-BB followed by the number of atoms in the dicarboxylic acid, e.g. PA 66 for polyhexamethylenedia-dipic amide from hexamethylenediamine and adipic acid. For copolymers the components are separated by a slash, e.g. PA 66/6 (90 10) is a copolymer composed of 90 parts PA 66 and 10 parts PA 6. [Pg.33]

As a family of curing agents for epoxy resins, the amidoamines are lower in viscosity than the polyamides. They exhibit very good adhesive properties due to their chemical structure and easy penetration. Amidoamine cured epoxy adhesives have shown very good properties on concrete and other porous substrates. They cure extremely well under humid conditions. In fact amidoamine cured epoxy formulations have been used to cure underwater in certain applications. A typical general-purpose room temperature curing epoxy-amidoamine system is described in Table 11.7. This adhesive is used as a general-purpose metal-to-metal adhesive and body solder in the automotive industry. [Pg.208]

Figure 4.10 Chemical structure of the Dow Water Solutions FT30 polyamide composite RO membrane. Figure 4.10 Chemical structure of the Dow Water Solutions FT30 polyamide composite RO membrane.
The behavior of two other formulations, microcapsules and small plastic laminate flakes, containing tetradecenol formate, were compared in applictions to plots of mature corn at Beltsville, in August 1980. (8) The Z-9-tetradecen-1-ol formate (TDF) is a mating disruptant, rather than a true pheromone, of the Heliothis species of moths. It was selected in these experiments because reliable analytical methods were available (9) and its behavior was expected to be similar to that of the actual pheromones, whose chemical structures and properties are also similar. The two formulations were polyurea-polyamide microcapsules 5-microns in diameter supplied by ICI at Bracknell, Berkshire, England, and a small (3 mm side) plastic laminate formulation supplied by the Herculite Corporation of York, PA. The microcapsules were applied at 300 g of TDF per hectare and the flakes at 285 g/h. Both formulations were applied by air to mature corn 240-270 cm in height in clear, hot weather with a daily maximum temperature of 39°C. [Pg.199]

Polymers such as polyamides (1-13), polyesters (1-5), and so on are not named as copolymers since the chemical structure of the joining linkage in each case shows that the parent monomers must alternate and copolymer nomenclature would therefore be redundant. [Pg.33]

A condensation polymer is one in which the repeating unit lacks certain atoms which were present in the monomer(s) from which the polymer was formed or to which it can be degraded by chemical means. Condensation polymers are formed from bi- or polyfunctional monomers by reactions which involve elimination of some smaller molecule. Polyesters (e.g., 1-5) and polyamides like 1-6 are examples of such thermoplastic polymers. Phenol-formaldehyde resins (Fig. 5-1) are thermosetting condensation polymers. All these polymers are directly synthesized by condensation reactions. Other condensation polymers like cellulose (1-11) or starches can be hydrolyzed to glucose units. Their chemical structure indicates that their repealing units consist of linked glucose entities which lack the elements of water. They are also considered to be condensation polymers although they have not been synthesized yet in the laboratory. [Pg.156]

Plastics. Plastics are the polymeric materials with properties intermediate between elastomers and fibers. In spite of the possible differences in chemical structure, the demarcation between fibers and plastics may sometimes be blurred. Polymers such as polypropylene and polyamides can be used as fibers and plastics by a proper choice of processing conditions. Plastics can be extruded as sheets or pipes, painted on surfaces, or molded to form countless objects. A typical commercial plastic resin may contain two or more polymers in addition to various additives and fillers. Additives and fillers are used to improve some property such as the processability, thermal or environmental stability, and mechanical properties of the final product. [Pg.516]

In recent years, the relaxation and yield behavior of amorphous semi-aromatic polyamides has been the subject of a detailed analysis at the molecular level [1-6], Two series of materials were investigated, so-called SAPA-R and SAPA-A (Table 1). In the SAPA-R series, the chemical structure is based on isophthalic or terephthalic acid and 2-methyl 1,5-pentanediamine. In the SAPA-A series, the chemical formulae include isophthalic or terephthalic acid residues, diamino dimethylcyclohexylmethane residues, and lactam-12 sequences. [Pg.15]

Synthetic PAs are produced by polycondensation of bifunctional monomers or by cationic and anionic ring-opening polymerization of lactams. Polymers obtained with the first technique are linear, whereas chain branching may occur with anionic polymerization. Based on their chemical structure, synthetic polyamides may be classified into two categories [1] ... [Pg.1218]

The chemical structure of polyamides and polyester involves only few chances for a reactive compatibilisation during melt processing with short residence times... [Pg.175]

According to the chemical structure of the hot-melt adhesive polymers (polyamide resins, saturated polyester, ethylene vinyl acetate copolymers, polyurethanes), the processing temperatures range between 120 and 240 °C. [Pg.45]


See other pages where Polyamides chemical structure is mentioned: [Pg.283]    [Pg.29]    [Pg.283]    [Pg.29]    [Pg.129]    [Pg.144]    [Pg.266]    [Pg.196]    [Pg.135]    [Pg.80]    [Pg.105]    [Pg.246]    [Pg.249]    [Pg.40]    [Pg.53]    [Pg.19]    [Pg.483]    [Pg.66]    [Pg.80]    [Pg.155]    [Pg.171]    [Pg.292]    [Pg.537]   
See also in sourсe #XX -- [ Pg.286 ]

See also in sourсe #XX -- [ Pg.286 ]




SEARCH



Polyamides, structures

© 2024 chempedia.info