Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly , oxidative polymerization

Alternative synthetic routes to poly(arylene sulfide)s have been pubHshed (79—82). The general theme explored is the oxidative polymerization of diphenyl disulfide and its substituted analogues by using molecular oxygen as the oxidant, often catalyzed by a variety of reagents ... [Pg.444]

Poly(phenylene ether) Alloys. Poly(phenylene ether) resins (91), composed of phenoHc monomers, have a very high T. The commercial resins are based on 2,6-dimethylphenol. The resin is produced by oxidative polymerization in toluene solution over an amine catalyst (see also PoLYETPiERS, aromatic). [Pg.270]

The living nature of ethylene oxide polymerization was anticipated by Flory 3) who conceived its potential for preparation of polymers of uniform size. Unfortunately, this reaction was performed in those days in the presence of alcohols needed for solubilization of the initiators, and their presence led to proton-transfer that deprives this process of its living character. These shortcomings of oxirane polymerization were eliminated later when new soluble initiating systems were discovered. For example, a catalytic system developed by Inoue 4), allowed him to produce truly living poly-oxiranes of narrow molecular weight distribution and to prepare di- and tri-block polymers composed of uniform polyoxirane blocks (e.g. of polyethylene oxide and polypropylene oxide). [Pg.89]

Oxidative polymerization of trans-bis-deprotected 79 under Hay coupling conditions [54] yielded, after end-capping with phenylacetylene, the high-melting and readily soluble oligomers 80a-e with the poly (triacetylene) backbone [87,106] (Scheme 8). Poly(triacetylene)s [PTAs,-(C=C-CR=CR-C=C) -] are the third class of linearly conjugated polymers with a non-aromatic allcarbon backbone in the progression which starts with polyacetylene [PA,... [Pg.64]

A polynucleoside with an unnatural polymeric backbone was synthesized by SBP-catalyzed oxidative polymerization of thymidine 5 -p-hydroxyphenylacetate. Chemoenzymafic synthesis of a new class of poly(amino acid), poly(tyrosine) containing no peptide bonds, was achieved by the peroxidase-catalyzed oxidative polymerization of tyrosine ethyl esters, followed by alkaline hydrolysis. Amphiphile higher alkyl ester derivatives were also polymerized in... [Pg.236]

Polyetherimide-polysiloxane multiblock copolymers, 24 716 Polyetherimides (PEI), 10 217—218 Polyether impression materials, 8 332-333 Poly(ether ketones) (PEK), 10 197-199 Polyether polyols, 25 455-456,464,468t, 470 propylene oxide polymerization to, 20 793-794, 812 Poly ethers, 12 663... [Pg.730]

Since the oxidative polymerization of phenols is the industrial process used to produce poly(phenyleneoxide)s (Scheme 4), the application of polymer catalysts may well be of interest. Furthermore, enzymic, oxidative polymerization of phenols is an important pathway in biosynthesis. For example, black pigment of animal kingdom "melanin" is the polymeric product of 2,6-dihydroxyindole which is the oxidative product of tyrosine, catalyzed by copper enzyme "tyrosinase". In plants "lignin" is the natural polymer of phenols, such as coniferyl alcohol 2 and sinapyl alcohol 3. Tyrosinase contains four Cu ions in cataly-tically active site which are considered to act cooperatively. These Cu ions are presumed to be surrounded by the non-polar apoprotein, and their reactivities in substitution and redox reactions are controlled by the environmental protein. [Pg.148]

It is well known that 2,6-dimethylphenol is oxidatively polymerized to poly(2,6-dimethyl-l,4-phenyleneoxide) with a copper amine complex as catalyst in the presence of oxygen at room temperature (Eq. 1)... [Pg.175]

However the formation of thin polymer film on the electrode, i.e. passivation of the electrode, resulted in cessation of the polymerization, which restricted the electro-oxidation as a polymerization procedure. The electro-oxidative polymerization as a method of producing poly(phenyleneoxide)s had not been reported except in one old patent, in which a copper-amine complex was added as an electron-mediator during the electrolysis (4). The authors recently found that phenols are electro-oxidatively polymerized to yield poly-(2,6-disubstituted phenyleneoxide)s, by selecting the electrolysis conditions This electro-oxidative polymerization is described in the present paper. [Pg.176]

Electro-oxidative polymerization of 2,6-disubstituted phenols is listed in Table I, with the polymerizations catalyzed by the copper-pyridine complex and oxidized by lead dioxide. 2,6-Dimethylphenol was electro-oxidatively polymerized to yield poly(2,6-dimethylphen-yleneoxide) with a molecular weight of 10000, as was attained by other polymerization methods. The NMR and IR spectra were in complete agreement with those measured for the other polymerization... [Pg.176]

The following questions on the electro-oxidative polymerization arose. First, why various phenol derivatives were smoothly polymerized which could not occur by the oxidation with the copper catalyst or lead dioxide. Secondly, why the activated phenol was reacted preferentially through C-0 coupling to form the poly(phenyleneoxide). The mechanism of the electro-oxidative polymerization is discussed below by using the example of 2,6-dimethylphenol. [Pg.178]

The first application example is the electro-oxidative polymerization of phenol in the presence of 2,2-bis[3,5-dimethyl-4-hydroxyphenyl]-propane, which is the procedure to obtain terminally hydroxylated poly(phenyleneoxide), i.e. the oligomer contained two hydroxy groups per one molecule. [Pg.182]

The second example is the electro-oxidative polymerization of phenols bearing functional substituents. It is known that salicylic acid forms a stable chelate with copper ion, thus the copper catalyst is deactivated and the polymerization does not occur. On the other hand, salicylic acid was electro-oxidatively polymerized to produce the poly(phenyleneoxide) bearing carboxylic group. [Pg.183]

The third application is the oligomerization of phenol. By selecting solvent and supporting electrolyte, phenol is electro-oxidatively polymerized to yield poly (phenyleneoxide) as a tan-colored powder. [Pg.183]

One of the earliest attempts to synthesize heat-resistant polymers was the oxidative polymerization of benzene to poly(p-phenylene) [IUPAC poly(l,4-phenylene)] (Eq. 2-227) [Jones... [Pg.166]

Among other in vitro enzymatic polymerizations that have been studied are the oxidative polymerizations of 2,6-disubstituted phenols to poly(p-phenylene oxide)s (Sec. 2-14b) catalyzed by horseradish peroxidase [Higashimura et al., 2000b] and the polymerization of P-cellobiosyl fluoride to cellulose catalyzed by cellulase [Kobayashi, 1999 Kobayashi et al., 2001],... [Pg.182]

Control of the electron-transfer step was also attempted by combining two metal species on a polymer ligand167. We prepared polymer-metal complexes involving both the Cu(II) and Mn(III) ions. The oxidative polymerization of XOH catalyzed by the PVP-Cu, Mn mixed complex or the diethylaminomethylated poly(styrene)(PDA)-Cu Mn mixed complex proceeded 10 times faster than the polymerization catalyzed by either PVP- or PDA-metal complex. The maxima of the activity observed at [Cu]/[Mn] = 1 and [polymer]/[Cu,Mn] moderately small where Cu and Mn ions were crowded within the contracted polymer chain. Cooperative interaction between Cu and Mn was inferred. The rate constant of the electron-transfer step (ke in Scheme 14) for Cu(II) -> Cu(I) was much larger than that for Mn(III) -> Mn(II). The rate constants of the reoxidation step (k0) were polymer-Mn ex polymer-Cu.Mn > polymer-Cu, so the rapid redox reaction... [Pg.81]

We had studied mainly the propylene oxide polymerization, because the requirement for stereoregulation imposed on the catalyst was supposed to be severest for this monomer among alkylene oxides. The catalysts extensively studied are R2A10A1R2 and EtZnNBu ZnEt, which are composed of two metal atoms (59). The latter catalyst, being a crystalline compound, is characterized by giving an isotactic poly-propylen oxide in high yield. [Pg.90]

T isubstituted phenols react with oxygen in the presence of amine complexes of copper to yield linear poly(arylene oxides) the molding resin marketed under the trade name PPO is produced in this way by the oxidative polymerization of 2,6-dimethylphenol (14) ... [Pg.442]

The first work in this field was probably that of Piletsky et al. [84] that described a competitive FILA for the analysis of triazine using the fluorescent derivative 5-[(4,6-dichlorotriazin-2-yl)amino]fluorescein. The fluorescence of the supernatant after incubation was proportional to the triazine concentration and the assay was selective to triazine over atrazine and simazine. The same fluorescent triazine derivative was applied to competitive assays using atrazine-imprinted films [70]. To this end an oxidative polymerization was performed in the presence of the template, the monomer(s) 3-thiopheneboronic acid (TBA) or mixtures of 3-amino-phenylboronic acid (APBA) and TBA (10 1) in ethanol-water (1 1 v/v) where the template is more soluble. The polymers were grafted onto the surface of polystyrene microplates. The poly-TBA polymers yielded a detection limit of 8 pM atrazine whereas for the poly-TBA-APBA plates it was lowered to 0.7 pM after 5 h of incubation. However, a 10-20% decrease in the polymer affinity was observed after 2 months. [Pg.147]

Poly (anil i n e - 2-c h Ion tan i line) -p -toluenesulfonic acid salt was obtained by oxidative polymerization of aniline with o-chloroaniline in solutions containing p-toluenesulfonic acid. The copolymer salt was subjected to heat treatment under nitrogen atmosphere at elevated (about 150°C) temperatures. The heat-treated samples acquired electric conductivity 2.7 X 10-2 (1 em According to ESR spectra, the heated poly(aniline-2-chloroani-line)-p-toluenesul Ionic salt exists as the poly(semiquinone cation radical), in which unpaired electrons are localized on or near the nitrogen atoms (Palaniappan 1997). [Pg.55]

In the most important series of polymers of this type, the metallotetraphenylporphyrins, a metalloporphyrin ring bears four substituted phenylene groups X, as is shown in 7.19. The metals M in the structure are typically iron, cobalt, or nickel cations, and the substituents on the phenylene groups include -NH2, -NR2, and -OH. These polymers are generally insoluble. Some have been prepared by electro-oxidative polymerizations in the form of electroactive films on electrode surfaces.79 The cobalt-metallated polymer is of particular interest since it is an electrocatalyst for the reduction of dioxygen. Films of poly(trisbipyridine)-metal complexes also have interesting electrochemical properties, in particular electrochromism and electrical conductivity.78 The closely related polymer, poly(2-vinylpyridine), also forms metal complexes, for example with copper(II) chloride.80... [Pg.288]

Organic compounds having labile hydrogen atoms, such as phenols, anilines, and acetylenes, are also oxidatively polymerized by metal-complex catalysts (Eqs. 1-3). The oxidative coupling is a dehydrogenation reaction the polymer chain produced contains the dehydrogenated monomer structure as a repeating unit. As a remarkable example, poly(phenylene ether), one of the... [Pg.535]

Organic compounds having labile hydrogens, such as phenols [41,42], phenylene-diamines [43], and acetylenes [44], can be oxidatively coupled in the presence of specific metal complexes to form polymeric compounds. The oxidative polymerization of 2,6-disubstituted phenols with a copper-amine complex produces poly(2,6-disubstituted phenylene ether) [45-51], Poly(2,6-dimethylphenylene ether) and poly(2,6-diphenylphenylene ether) are commercially produced from 2,6-dimethyl phenol and 2,6-diphenylphenol, respectively (Figure 5). These polymers exhibit excellent performance as engineering plastics. [Pg.541]

In the oxidative polymerization of phenols catalyzed by Cu complexes, the substrate coordinates to the Cu(II) complex and is then activated. The activated phenol couples in the next step. The Cu complex acts effectively as a catalyst at concentrations of 0.2-2 mol% compared to the substrate. The oxidation proceeds rapidly at room temperature under an air atmosphere to give poly(phenylene ether) in a quantitative yield. The polymerization follows Michaelis-Menten-type kinetics [55]. Enzymatic oxidation of phenols is an important pathway in the biosynthesis of lignin in plants [56] catalyzed by a metalloenzyme. [Pg.542]

Dimethylphenol is oxidatively polymerized to poly(2,6-dimethyl-1,4-phenyl-ene ether) with a copper-amine complex by a laccaselike reaction. The activated phenols are coupled to form a dimer. The dimer is activated by a mechanism similar to that by which the polymerization proceeds. The effects of the amine ligands are to improve the solubility and the stability of the copper complex as well as the phenol-coordinated complex and to control the redox potential of the copper complex. [Pg.543]

Aromatic primary diamines, dithiols, and diethynyl compounds are oxidatively polymerized with metal-amine complexes as the catalyst to yield poly (azopheny-lene) [78], poly(disulfide) [79], and polydiyne [80], respectively (Figure 7, Eq. [Pg.545]

IV.A.1. Synthesis of Poly(thio-1,4-Phenylene) by Oxidative Polymerization... [Pg.547]


See other pages where Poly , oxidative polymerization is mentioned: [Pg.445]    [Pg.44]    [Pg.65]    [Pg.233]    [Pg.236]    [Pg.153]    [Pg.119]    [Pg.186]    [Pg.228]    [Pg.165]    [Pg.157]    [Pg.63]    [Pg.126]    [Pg.66]    [Pg.66]    [Pg.445]    [Pg.44]    [Pg.97]    [Pg.101]   
See also in sourсe #XX -- [ Pg.375 , Pg.376 ]




SEARCH



Oxidized Poly

Poly , oxidative

Poly , polymeric

Poly oxidative chemical polymerizations

Poly oxide

Polymerization poly

© 2024 chempedia.info