Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly methyl methacrylate-butyl

The sedimentation and diffusion coefficients for three different preparations of poly(methyl methacrylate) were measuredf in /i-butyl chloride at 35.6 C (= 0) and in acetone at 20 C (> 0) and the following results were obtained ... [Pg.656]

Increa sing the bulkiness of the alkyl group from the esterifying alcohol in the ester also restricts the motion of backbone polymer chains past each other, as evidenced by an increase in the T within a series of isomers. In Table 1, note the increase in T of poly(isopropyl methacrylate) over the / -propyl ester and similar trends within the butyl series. The member of the butyl series with the bulkiest alcohol chain, poly(/-butyl methacrylate), has a T (107°C) almost identical to that of poly(methyl methacrylate) (Tg = 105° C), whereas the butyl isomer with the most flexible alcohol chain, poly( -butyl methaciylate), has a T of 20°C. Further increase in the rigidity and bulk of the side chain increases the T. An example is poly(isobomyl methacrylate)... [Pg.261]

Following the success in blending rubbery materials into polystyrene, styrene-acrylonitrile and PVC materials to produce tough thermoplastics the concept has been used to produce high-impact PMMA-type moulding compounds. These are two-phase materials in which the glassy phase consists of poly(methyl methacrylate) and the rubbery phase an acrylate polymer, usually poly(butyl acrylate Commercial materials of the type include Diakon MX (ICI), Oroglas... [Pg.413]

There are some indications that the situation described above has been realized, at least partially, in the system styrene-methyl methacrylate polymerized by metallic lithium.29 29b It is known51 that in a 50-50 mixture of styrene and methyl methacrylate radical polymerization yields a product of approximately the same composition as the feed. On the other hand, a product containing only a few per cent of styrene is formed in a polymerization proceeding by an anionic mechanism. Since the polymer obtained in the 50-50 mixture of styrene and methyl methacrylate polymerized with metallic lithium had apparently an intermediate composition, it has been suggested that this is a block polymer obtained in a reaction discussed above. Further evidence favoring this mechanism is provided by the fact that under identical conditions only pure poly-methyl methacrylate is formed if the polymerization is initiated by butyl lithium and not by lithium dispersion. This proves that incorporation of styrene is due to a different initiation and not propagation. [Pg.150]

Since this pioneering work a number of IPNs have been prepared. Poly(styrene) has been used as the second network polymer in conjunction with several other polymers, including poly(ethyl acrylate), poly(n-butyl acrylate), styrene-butadiene, and castor oil. Polyurethanes have been used to form IPNs with poly(methyl methacrylate), other acrylic polymers, and with epoxy resins. [Pg.154]

The above explanation of autoacceleration phenomena is supported by the manifold increase in the initial polymerization rate for methyl methacrylate which may be brought about by the addition of poly-(methyl methacrylate) or other polymers to the monomer.It finds further support in the suppression, or virtual elimination, of autoacceleration which has been observed when the molecular weight of the polymer is reduced by incorporating a chain transfer agent (see Sec. 2f), such as butyl mercaptan, with the monomer.Not only are the much shorter radical chains intrinsically more mobile, but the lower molecular weight of the polymer formed results in a viscosity at a given conversion which is lower by as much as several orders of magnitude. Both factors facilitate diffusion of the active centers and, hence, tend to eliminate the autoacceleration. Final and conclusive proof of the correctness of this explanation comes from measurements of the absolute values of individual rate constants (see p. 160), which show that the termination constant does indeed decrease a hundredfold or more in the autoacceleration phase of the polymerization, whereas kp remains constant within experimental error. [Pg.128]

Various substituted styrene-alkyl methacrylate block copolymers and all-acrylic block copolymers have been synthesized in a controlled fashion demonstrating predictable molecular weight and narrow molecular weight distributions. Table I depicts various poly (t-butylstyrene)-b-poly(t-butyl methacrylate) (PTBS-PTBMA) and poly(methyl methacrylate)-b-poly(t-butyl methacrylate) (PMMA-PTBMA) samples. In addition, all-acrylic block copolymers based on poly(2-ethylhexyl methacrylate)-b-poly(t-butyl methacrylate) have been recently synthesized and offer many unique possibilities due to the low glass transition temperature of PEHMA. In most cases, a range of 5-25 wt.% of alkyl methacrylate was incorporated into the block copolymer. This composition not only facilitated solubility during subsequent hydrolysis but also limited the maximum level of derived ionic functionality. [Pg.264]

Although the potassium superoxide route can be universally applied to various alkyl methacrylates, it is experimentally more difficult than simple acid hydrolysis. In addition, limited yields do not permit well-defined hydrophobic-hydrophilic blocks. On the other hand, acid catalyzed hydrolysis is limited to only a few esters such as TBMA, but yields of carboxylate are quantitative. Hydrolysis attempts of poly(methyl methacrylate) (PMMA) and poly(isopropyl methacrylate) (PIPMA) do not yield an observable amount of conversion to the carboxylic acid under the established conditions for poly(t-butyl methacrylate) (PTBMA). This allows for selective hydrolysis of all-acrylic block copolymers. [Pg.270]

Preparation of Block Copolymers. Poly(styrene-b-methyl methacrylate) and poly(styrene-b-t-butyl methacrylate) were prepared by procedures similar to those reported for poly(styrene-b-methyl methacrylate (12,13). Poly(methyl methacrylate-b-t-butyl methacrylate) was synthesized by adaptation of the method published (14) for syndiotactic poly(methyl methacrylate) polymerization of methyl methacrylate was initiated with fluorenyllithium, and prior to termination, t-butyl methacrylate was added to give the block copolymer. Pertinent analytical data are as follows. [Pg.278]

The Preparation of MM-b-MA and MM-b-MA.K. Inspired by the unexpected selectivity of the reaction of TMSI with S-b-MM and S-b-tBM, we decided to attempt the preparation of poly(methyl methacrylate-b-t-butyl methacrylate) (MM-b-tBM) and its unprecedented conversion to MM-b-MA. [Pg.288]

Figure 3. Time dependence of the fraction R of unreacted aminostyrene residues during acetylation by 0.14 M acetic anhydride at 30°C. Methyl methacrylate copolymer in acetonitrile solution (0) linear poly-(methyl methacrylate-co-butyl methacrylate) swollen with acetonitrile Cd) methyl methacrylate copolymer crosslinked with 1 mole% ( ) and with 15 mole% ( ) ethylene dimethacrylate poly(methacrylate crosslinked with 3 mole% ethylene dimethacrylate containing entrapped poly(methyl acrylate-co-aminostyrene) ( ). Figure 3. Time dependence of the fraction R of unreacted aminostyrene residues during acetylation by 0.14 M acetic anhydride at 30°C. Methyl methacrylate copolymer in acetonitrile solution (0) linear poly-(methyl methacrylate-co-butyl methacrylate) swollen with acetonitrile Cd) methyl methacrylate copolymer crosslinked with 1 mole% ( ) and with 15 mole% ( ) ethylene dimethacrylate poly(methacrylate crosslinked with 3 mole% ethylene dimethacrylate containing entrapped poly(methyl acrylate-co-aminostyrene) ( ).
Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]... Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]...
Non-ionic polymers have also been blended with ionic block copolymers. Poly(vinyl phosphanate)-l7-polystyrene and PS-l -SPS have been blended with PPO. In both cases, improvements were seen in MeOH permeability over that of fhe unmodified block copolymers and conductivity values dropped as a function of increasing PPO confenf. PVDF has been blended wifh SEES in order fo improve its mechanical and chemical stability, but aggregation was found fo be a problem due fo incompafibility between components. However, it was found that a small amount (2 wt%) of a methyl methacrylate-butyl acrylate-methyl methacrylate block copolymer as com-patibilizer not only led to greater homogeneity but also improved mechanical resistance, water management, and conductivity. ... [Pg.162]

Figure 42. A plot of proton beam vs electron beam sensitivity for several resist systems. COP is a copolymer of glycidyl methacrylate and ethyl acrylate, PVC is poly (vinylcinnamate), PCS is poly (chlorostyrene), PTBMA is polyO-butyl methacrylate), PVA is poly (vinyl acetate), PMMA is poly (methyl methacrylate). (Reproduced with permission from Ref. 57 J... Figure 42. A plot of proton beam vs electron beam sensitivity for several resist systems. COP is a copolymer of glycidyl methacrylate and ethyl acrylate, PVC is poly (vinylcinnamate), PCS is poly (chlorostyrene), PTBMA is polyO-butyl methacrylate), PVA is poly (vinyl acetate), PMMA is poly (methyl methacrylate). (Reproduced with permission from Ref. 57 J...
Fig. 11 Chemical formulas of poly(acryl amide) (PAAm), poly(methyl methacrylate) (PMMA), poly(2-hydroxyethyl methacrylate) (PHEMA), poly(t-butyl acrylate) (PtBA), and poly(acrylic acid) (PAA), and poly(dimethyl aminoethyl methacrylate) (PDMAEMA)... Fig. 11 Chemical formulas of poly(acryl amide) (PAAm), poly(methyl methacrylate) (PMMA), poly(2-hydroxyethyl methacrylate) (PHEMA), poly(t-butyl acrylate) (PtBA), and poly(acrylic acid) (PAA), and poly(dimethyl aminoethyl methacrylate) (PDMAEMA)...
PS—polystyrene, PMMA—poly(methyl methacrylate), PMA—poly(methyl acrylate), PDMAEMA—poly((Nd f-dimethylamino)ethyl methacrylate), PDMA—poly( dimethyl-acrylamide), P(t-BA)—poly(tert-butyl acrylate), PAA—poly(acrylic acid), PPFS—poly (pentafluorostyrene), PHFA—poly(heptadecafluorodecyl acrylate)... [Pg.131]

Z)ra c/ - poly(butyl vinyl ether)-v-[2-(vinyloxy)ethyl methacrylate] )-v-(Z>ra c/ - poly(methyl methacrylate)-v-[2-(vinyloxy)ethyl methacrylate] )... [Pg.390]

Fig. 18. NMR spectrum in CDCI3 of the poly(methyl methacrylate) (MnGpc=6900, Mw/Mn=1.13) obtained with the (TPP)AlSPr (1, X=SPr)-methylaluminum bis(2,6-di-tert-butyl-4-methylphenolate) (3e) system. [MMA]o/[l]o/[3e]o=30/1.0/0.5,100% conversion... Fig. 18. NMR spectrum in CDCI3 of the poly(methyl methacrylate) (MnGpc=6900, Mw/Mn=1.13) obtained with the (TPP)AlSPr (1, X=SPr)-methylaluminum bis(2,6-di-tert-butyl-4-methylphenolate) (3e) system. [MMA]o/[l]o/[3e]o=30/1.0/0.5,100% conversion...
In general, there are two distinctively different classes of polymerization (a) addition or chain growth polymerization and (b) condensation or step growth polymerization. In the former, the polymers are synthesized by the addition of one unsaturated unit to another, resulting in the loss of multiple bonds. Some examples of addition polymers are (a) poly(ethylene), (b) poly(vinyl chloride), (c) poly(methyl methacrylate), and (d) poly(butadiene). The polymerization is initiated by a free radical, which is generated from one of several easily decomposed compounds. Examples of free radical initiators include (a) benzoyl peroxide, (b) di-tert-butyl peroxide, and (c) azobiisobutyronitrile. [Pg.86]


See other pages where Poly methyl methacrylate-butyl is mentioned: [Pg.160]    [Pg.237]    [Pg.302]    [Pg.42]    [Pg.149]    [Pg.296]    [Pg.160]    [Pg.237]    [Pg.302]    [Pg.42]    [Pg.149]    [Pg.296]    [Pg.269]    [Pg.531]    [Pg.396]    [Pg.422]    [Pg.376]    [Pg.431]    [Pg.267]    [Pg.276]    [Pg.17]    [Pg.20]    [Pg.56]    [Pg.739]    [Pg.365]    [Pg.135]    [Pg.358]    [Pg.390]    [Pg.390]    [Pg.390]    [Pg.390]    [Pg.467]    [Pg.68]    [Pg.194]   


SEARCH



Butyl 2-Methacrylate

Butyl methacrylates

Butyl-methyl

Methacrylate 2-methyl-butyl

Methyl methacrylate

Poly - methacrylic

Poly methacrylate

Poly methacrylics

Poly methyl methacrylate

Poly(butyl methacrylate)

Poly(methyl

Poly[(methyl methacrylate-co(butyl

© 2024 chempedia.info