Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly copolymers with methyl

UV absorption spectra, fluorescence emission spectra and photostabilization effect of 2-(2-hydroxy-4-acryloyloxyphenyl)-2/7-benzotriazole and of its polymer bound forms were studied in poly-CK-l,4-polybutadiene [337]. The following activity series was found copolymer with methyl methacrylate > homopolymer > monomer. It seems that chromophoric units incorporated into a macromolecule behave cooperatively (causing self-absorbance of the emitted radiation). [Pg.157]

Several polymers were evaluated in the form of a surface coating on glass beads packed in columns to determine their ability to retain platelets when whole human blood passes over the surface. This ability was measured as the platelet retention index p, the fraction of platelets retained on the column. Lowest values of p were found for poly(ethylene oxide), polypropylene oxide), poly(tetramethylene oxide) (in the form of polyurethanes), and polydimethylsiloxane. Highest values (around 0.8) were found for cross-linked poly(vinyl alcohol) and the copolymers of ethylenediamine with diisocyanates. Intermediate values were found for polystyrene and its copolymers with methyl acrylate, for polyacrylate, and for poly(methyl methacrylate). The results are interpreted in terms of possible hydrophobic and hydrogen bonding interactions with plasma proteins. [Pg.41]

A series of papers on the thermal degradation of the alkali-metal salts of poly(methacrylic acid) and of their copolymers with methyl methacrylate has appeared. The principal decomposition products have been identified and the variation in their yield with polymer composition determined. Similar experiments have been made on the barium salt of poly(methacrylic acid). Copolymer studies have included methyl methacrylate-styrene, " methyl methacrylate-flE-methylstyrene, " methyl methacrylate-ethylene," methyl... [Pg.313]

Interest continues in the binding of heparin to polymers in an attempt to produce non-thrombogenic surfaces. This has been the aim in the use of glutaralde-hyde-protein complexes as coatings for latex rubber and polyurethanes. Glutaraldehyde has also been used to bind antibodies to partially hydrolysed polyamide surfaces for enzyme-linked radioassay techniques. One of the few examples of direct polymerization (as opposed to surface modification) in an attempt to produce polymers having improved compatibility involves the use of 2-methacryloyloxyethylphosphoryl choline in the formation of homopolymers and copolymers with methyl methacrylate. An isocyanato-urethane methacrylate has been synthesized from 2-hydroxyethyl methacrylate in connection with dental materials research in which the preparation of poly functional monomers for improvement of interfacial bonding with tooth tissue is a topic of some interest. [Pg.359]

Yellow-brown powder According to U30) material is the sodium salt of a copolymer of diacrylyl -methane and methyl vinyl ketone or the sodium salt of the reaction product of poly(diacrylylmethane) with methyl vinyl ketone... [Pg.74]

Examples of photothermoplasts include polyacrylates, polyacrylamides, polystyrenes, polycarbonates, and their copolymers (169). An especially well-re searched photothermoplast is poly(methyl methacrylate) (PMMA), which is blended with methyl methacrylate (MMA) or styrene as a monomer, and titanium-bis(cyclopentadienyl) as a photoinitiator (170). [Pg.154]

In addition to providing fully alkyl/aryl-substituted polyphosphasenes, the versatility of the process in Figure 2 has allowed the preparation of various functionalized polymers and copolymers. Thus the monomer (10) can be derivatized via deprotonation—substitution, when a P-methyl (or P—CH2—) group is present, to provide new phosphoranimines some of which, in turn, serve as precursors to new polymers (64). In the same vein, polymers containing a P—CH group, for example, poly(methylphenylphosphazene), can also be derivatized by deprotonation—substitution reactions without chain scission. This has produced a number of functionalized polymers (64,71—73), including water-soluble carboxylate salts (11), as well as graft copolymers with styrene (74) and with dimethylsiloxane (12) (75). [Pg.259]

Alkenylsuccinic anhydrides made from several linear alpha olefins are used in paper sizing, detergents, and other uses. Sulfosuccinic acid esters serve as surface active agents. Alkyd resins (qv) are used as surface coatings. Chlorendric anhydride [115-27-5] is used as a flame resistant component (see Flame retardants). Tetrahydrophthalic acid [88-98-2] and hexahydrophthalic anhydride [85-42-7] have specialty resin appHcations. Gas barrier films made by grafting maleic anhydride to polypropylene [25085-53-4] film are used in food packaging (qv). Poly(maleic anhydride) [24937-72-2] is used as a scale preventer and corrosion inhibitor (see Corrosion and corrosion control). Maleic anhydride forms copolymers with ethylene glycol methyl vinyl ethers which are partially esterified for biomedical and pharmaceutical uses (189) (see Pharmaceuticals). [Pg.461]

Poly(vinyl acetate) and its copolymers with ethylene are available as spray-dried emulsion soHds with average particle sizes of 2—20 p.m the product can be reconstituted to an emulsion by addition of water or it can be added directly to formulations, eg, concrete. The powders may be used to raise soHds of a lower soHds latex. Solutions of resin in methyl and ethyl alcohol at 2—50 wt % soHds are also available. [Pg.468]

Polymethacrylates. Poly(methyl methacrylate) [9011-14-7] is a thermoplastic. Itis the acryUc resin most used in building products, frequendy as a blend or copolymer with other materials to improve its properties. The monomer is polymerized either by bulk or suspension processes. Eor glazing material, its greatest use, only the bulk process is used. Sheets are prepared either by casting between glass plates or by extmsion of pellets through a sHt die. This second method is less expensive and more commonly used. Peroxide or azo initiators are used for the polymerization (see Methacrylic polymers). [Pg.327]

A number of higher poly(vinyl ether)s, in particular the ethyl and butyl polymers, have found use as adhesives. When antioxidants are incorporated, pressure-sensitive adhesive tapes from poly(vinyl ethyl ether) are said to have twice the shelf life of similar tapes from natural rubber. Copolymers of vinyl isobutyl ether with methyl acrylate and ethyl acrylate (Acronal series) and with vinyl chloride have been commercially marketed. The first two products have been used as adhesives and impregnating agents for textile, paper and leather whilst the latter (Vinoflex MP 400) has found use in surface coatings. [Pg.476]

Recently, poly(itaconamide) with 4-tolylcarbamoyl pendant groups have been synthesized in our laboratory. The polymer 9 and copolymers 10 and 11 were synthesized via aminolysis of poly(N-4-methyl-phenylitaconi-... [Pg.548]

Brown and White employed this approach to prepare block copolymers of styrene and mcthacrylic acid (6). They were able to hydrolyze poly(styrene-b-methyl methacrylate) (S-b-MM) with p-toluenesulfonic acid (TsOH). Allen, et al., have recently reported acidic hydrolysis of poly(styrene-b-t-butyl methacrylate) (S-b-tBM) (7-10). These same workers have also prepared potassium methacrylate blocks directly by treating blocks of alkyl methacrylates with potassium superoxide (7-10). [Pg.277]

Preparation of Block Copolymers. Poly(styrene-b-methyl methacrylate) and poly(styrene-b-t-butyl methacrylate) were prepared by procedures similar to those reported for poly(styrene-b-methyl methacrylate (12,13). Poly(methyl methacrylate-b-t-butyl methacrylate) was synthesized by adaptation of the method published (14) for syndiotactic poly(methyl methacrylate) polymerization of methyl methacrylate was initiated with fluorenyllithium, and prior to termination, t-butyl methacrylate was added to give the block copolymer. Pertinent analytical data are as follows. [Pg.278]

Isotactic poly(methyl methacrylate/methacrylic acid), a copolymer of methyl methacrylate and methacrylic acid, was synthesized by the partial hydrolysis of isotactic poly(MMA) according to the method of Klesper et al. (10-13). A hydrolyzing mixture of 8 mL dioxane and 4 mL methanolic KOH (10% by weight K0H) was mixed with 250 mg of polymer in closed vials at 85°C for 48 hr. Saponified polymer separated from the solution and adhered to the walls of the vial. The precipitated polymer was dissolved in water and then precipitated again with a few drops of HC1. The solution was warmed and the coagulated polymer removed, washed with water, and dried in vacuo at 50°C. The nmr spectrum indicated approxi-... [Pg.484]

Atactic poly(methyl methacrylate/methacrylic acid), the copolymer of methyl methacrylate (MMA) and methacrylic acid (MAA), was synthesized "directly" as a prepolymer to be esterified with bis(tri-n-butyltin) oxide (TBTO). Two formulations of poly (MMA/MAA) were synthesized, a 1 1 and a 2 1 MMA and MAA copolymer whose syntheses differ only in the proportion of monomer reacted. [Pg.484]

GTP was employed for the synthesis of block copolymers with the first block PDMAEMA and the second PDEAEMA, poly[2-(diisopropylamino)e-thyl methacrylate], PDIPAEMA or poly[2-(N-morpholino)ethyl methacrylate], PM EM A (Scheme 33) [87]. The reactions took place under an inert atmosphere in THF at room temperature with l-methoxy-l-trimethylsiloxy-2-methyl-1-propane, MTS, as the initiator and tetra-n-butyl ammonium bibenzoate, TBABB, as the catalyst. Little or no homopolymer contamination was evidenced by SEC analysis. Copolymers in high yields with controlled molecular weights and narrow molecular weight distributions were obtained in all cases. The micellar properties of these materials were studied in aqueous solutions. [Pg.51]


See other pages where Poly copolymers with methyl is mentioned: [Pg.71]    [Pg.17]    [Pg.19]    [Pg.137]    [Pg.402]    [Pg.523]    [Pg.76]    [Pg.210]    [Pg.987]    [Pg.18]    [Pg.302]    [Pg.340]    [Pg.219]    [Pg.66]    [Pg.53]    [Pg.464]    [Pg.516]    [Pg.330]    [Pg.297]    [Pg.481]    [Pg.551]    [Pg.739]    [Pg.744]    [Pg.11]    [Pg.91]    [Pg.132]    [Pg.26]    [Pg.276]    [Pg.119]    [Pg.285]    [Pg.271]    [Pg.62]   


SEARCH



Methyl copolymers

Methyl methacrylate, copolymers with poly

Poly copolymers with

Poly(methyl

Styrene/acrylonitrile copolymer blend with poly(methyl

© 2024 chempedia.info