Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface polyamides

In the patent by Kurihara, Uemura and Okada,38 combinations of a polymeric amine with a monomeric amine were used to produce composite polyamide membranes having high salt rejections. The membranes were described as having a bilayer polyamide barrier film a surface polyamide zone rich in monomeric amine, and a subsurface polyamide zone incorporating both monomeric and polymeric amine. This patent disclosure demonstrated an understanding of the mechanism of interfacial polyamide barrier layer formation. [Pg.333]

To anchor the sheet mechanically, non-penetrating rivets are used to fix the membrane, particularly on sloped roofs or steep surfaces. Polyamide studs are fixed to the deck with an EPDM rubber cap and metal clip. Spacing of the studs depending on the expected wind lift, and the covering is then placed over the fixed studs. With the help of proper lubricants, caps are secured to the studs with a fastener tool and the perimeters can be secured with adhesive. [Pg.87]

The thermal protection system of the space shutde is composed mainly of subliming or melting ablators that are used below their fusion or vaporization reaction temperatures (42). In addition to the carbon-carbon systems discussed above, a flexible reusable surface insulation composed of Nomex felt substrate, a Du Pont polyamide fiber material, is used on a large portion of the upper surface. High and low temperature reusable surface insulation composed of siHca-based low density tiles are used on the bottom surface of the vehicle, which sees a more severe reentry heating environment than does the upper surface of the vehicle (43). [Pg.5]

In 1954 the surface fluorination of polyethylene sheets by using a soHd CO2 cooled heat sink was patented (44). Later patents covered the fluorination of PVC (45) and polyethylene bottles (46). Studies of surface fluorination of polymer films have been reported (47). The fluorination of polyethylene powder was described (48) as a fiery intense reaction, which was finally controlled by dilution with an inert gas at reduced pressures. Direct fluorination of polymers was achieved in 1970 (8,49). More recently, surface fluorinations of poly(vinyl fluoride), polycarbonates, polystyrene, and poly(methyl methacrylate), and the surface fluorination of containers have been described (50,51). Partially fluorinated poly(ethylene terephthalate) and polyamides such as nylon have excellent soil release properties as well as high wettabiUty (52,53). The most advanced direct fluorination technology in the area of single-compound synthesis and synthesis of high performance fluids is currently practiced by 3M Co. of St. Paul, Minnesota, and by Exfluor Research Corp. of Austin, Texas. [Pg.278]

The white cell adsorption filter layer is typically of a nonwoven fiber design. The biomaterials of the fiber media are surface modified to obtain an optimal avidity and selectivity for the different blood cells. Materials used include polyesters, eg, poly(ethylene terephthalate) and poly(butylene terephthalate), cellulose acetate, methacrylate, polyamides, and polyacrylonitrile. Filter materials are not cell specific and do not provide for specific filtration of lymphocytes out of the blood product rather than all leukocytes. [Pg.523]

An all aromatic polyetherimide is made by Du Pont from reaction of pyromelUtic dianhydride and 4,4 -oxydianiline and is sold as Kapton. It possesses excellent thermal stabiUty, mechanical characteristics, and electrical properties, as indicated in Table 3. The high heat-deflection temperature of the resin limits its processibiUty. Kapton is available as general-purpose film and used in appHcations such as washers and gaskets. Often the resin is not used directly rather, the more tractable polyamide acid intermediate is appHed in solution to a surface and then is thermally imidi2ed as the solvent evaporates. [Pg.333]

Molded polyamide surfaces can be hardened by grafting with Ai,Ai-diallylacrylamide [3085-68-5] monomer under exposure to electron beam (159). AijAZ-DiaHyltartardiamide [58477-85-3] is a cross-linking agent for acrylamide reversible gels in electrophoresis. Such gels can be dissolved by a dilute periodic acid solution in order to recover protein fractions. [Pg.88]

While polymeric surfaces with relatively high surface energies (e.g. polyimides, ABS, polycarbonate, polyamides) can be adhered to readily without surface treatment, low surface energy polymers such as olefins, silicones, and fluoropolymers require surface treatments to increase the surface energy. Various oxidation techniques (such as flame, corona, plasma treatment, or chromic acid etching) allow strong bonds to be obtained to such polymers. [Pg.460]

Cellulose acetate is a common membrane material, but others include nylon and aromatic polyamides. The mechanism at the membrane surface involves the influent water and impurities attempting to pass through the pressurized side, but only pure water and certain impurities soluble in the membrane emerge from the opposite side. [Pg.362]

About 80-90% of the elemental P produced is reoxidized to (pure) phosphoric acid (p. 521). The rest is used to make phosphorus oxides (p. 503). sulfides (p. 506), phosphorus chlorides and oxochloride (p. 4%). and organic P compounds. A small amount is convened to red phos rftorus (see below) for use in the striking surface of matches for pyrotechnics and as a flame retarding agent (in polyamides). Bulk price for P4 is S2.00/kg. [Pg.480]

Whereas PVA fleeces are used only in primary cells polyamide fleeces compete with polyolefin, preferably polypropylene fleeces. The latter are more stable at higher temperatures and do not contribute to electrolyte carbonation, but they wet only after a pretreatment either by fluorination [131] or by coating and crosslinking with hydrophilic substances (e.g., polyacrylic acid [132]) on the surface of the fiber. [Pg.287]

The behavior of the physico-mechanical characteristics of polymeric composites is easily traceable in the table given in [144] which presents the results of experiments with polyamide matrices filled with resite particles of different shape. The filler concentrations were adjusted so that the integral contact surface area in the filler-matrix system remained the same. [Pg.18]

In addition, even where foaming is not a specific problem in a boiler, carryover may occur, especially in lower pressure boilers with very high TDS (i.e., over 10,000 to 15,000 ppm TDS) because of the collapse of surface bubbles. This leads to BW aerosol generation and entrainment of the spray in steam. Under these circumstances, antifoam agents such as polyamides are useful in preventing these entrainment problems. Furthermore, the antifoaming action of polyamides is often enhanced by protective colloid materials such as tannins, and consequently, formulations containing polyamide emulsions in an alkaline tannin base are available. [Pg.550]


See other pages where Surface polyamides is mentioned: [Pg.380]    [Pg.393]    [Pg.319]    [Pg.149]    [Pg.380]    [Pg.393]    [Pg.319]    [Pg.149]    [Pg.247]    [Pg.124]    [Pg.17]    [Pg.309]    [Pg.220]    [Pg.226]    [Pg.239]    [Pg.52]    [Pg.531]    [Pg.535]    [Pg.535]    [Pg.150]    [Pg.249]    [Pg.352]    [Pg.286]    [Pg.432]    [Pg.337]    [Pg.365]    [Pg.367]    [Pg.48]    [Pg.117]    [Pg.117]    [Pg.263]    [Pg.265]    [Pg.136]    [Pg.101]    [Pg.404]    [Pg.443]    [Pg.559]    [Pg.8]    [Pg.283]    [Pg.151]    [Pg.152]   
See also in sourсe #XX -- [ Pg.376 , Pg.377 ]




SEARCH



Polyamide-6,6 , surface energies

Polyamide-imide surfaces

Polyamides surface hydrolysis

Surface modification aromatic polyamides

© 2024 chempedia.info