Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plant-microbe interactions

Profiling of wheat class III peroxidases genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns / / Molecular Plant-Microbe Interactions. V. 18. P. 730-741. [Pg.218]

Simonetti E. Veronico P. Melillo M. T. Delibes A. Andres M.F. Lopez-Brana I. (2009) Analysis of class III peroxidase genes expressed in roots of resistant and susceptible wheat lines infected by Heterodera avenae / / Mol. Plant-Microbe Interact. V. 22. P. 1081-1092. [Pg.219]

C. Lafitte, J.-P. Barthe, X. Gansel, G. Dechamp-Guillaume, C. Faucher, D. Mazau and M.-T. Esquerr6-Tugay6, Mol. Plant-Microbe Interact. 6 (1993) 628. [Pg.203]

Cervone, F., G. De Lorenzo, G. Salvi, C. Bergmann, M.G. Hahn, Y. Ito, A. Darvill, and P. Albersheim. 1989. In BJJ Lugtenberg (ed) Signal Molecules in Plants and Plant-Microbe Interactions. NATO ASI Series, Volume H36 (Springer Verlag, Heidelberg, FRG) pp 85-89. [Pg.282]

J. Weber, O. Olsen and D. v. Wettstein, Seven International Symposium on Molecular Plant-Microbe Interactions (1994). [Pg.329]

C. Masclaux, N. Hugouvieux-Cotte-Pattat and D. Expert, Mol. Plant-Microbe Interact., (1996) in press. [Pg.330]

G, Condemine and J. Robert-Baudouy, Mol. Plant -Microbe Interact., 8... [Pg.330]

Yang Z, Cramer CL, Lacy GH (1992) Erwinia carotovora subsp. carotovora pectic enzymes In planta gene activation and roles in soft rot pathogenesis. Mol Plant-Microbe Interact 5 104-112... [Pg.397]

Palva TK, Holmstrom K-0, Heino P, PalvaET (1992) Induction of plant defence responses by exoenzymes of Erwinia carotvora subsp. carotovora. Mol Plant-Microbe Interact 6 190-196... [Pg.397]

Hahn M. G., Bucheli P., Cervone F., Doares S. H., O Neill R. A., Darvill A. Albersheim P. (1989). Roles of cell wall constituents in plant-pathogen interactions. In Nester E. Kosuge T., ed. Plant Microbe Interactions, Vol. 4. McGraw-Hill Publishing Co., 131-181. [Pg.736]

Sauvage, C., and Expert, D. 1994. Differential regulation by iron of Erwinia chrysanthemi pectate lyases pathogenicity of iron transport regulatory (cbr) mutants. Mol. Plant-Microbe Interact. 7 71-77... [Pg.880]

Schouten A, G van den Berg, C Edel-Hermann, C Steinberg, N Gautheron, C Alabouvette, CH de Vos, P Lemanceau, JM Raaijmakers (2004) Defense responses of Fusarium oxysporum to 2,4-diacetylphlo-roglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens. Mol Plant-Microbe Interact 17 1201-1211. [Pg.454]

Chin-A-Woeng TFC, D van den Broek, G de Voer, KMGK van der Drift, S Tuinman, JE Thomas-Oates, BJJ Lugtenberg, GV Bloemberg (2001) Phenazine-l-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PC L 1391 is regulated by multiple factors secreted into the growth medium. Mol Plant-Microbe Interact 14 869-879. [Pg.614]

Chin-A-Woeng TFC, GV Bloemberg, IHM Mulders, LC Dekkers, BJJ Lugtenberg (2000) Root comonization by phenazine-l-carboxamide-producing bacterium Pseudomonas chlororaphis PCL 1391 is essential for biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 13 1340-1345. [Pg.614]

Kniper I, EL Lagendijk, GV Bloemberg, BJJ Lugtenberg (2004) Rhizoremediation a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17 6-15. [Pg.616]

Kniper I, GV Bloemberg, BJJ Lngtenberg (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant-Microbe Interact 14 1197-1205. [Pg.616]

C. Keel, U. Schnider, M. Maurhofer, C. Voisard, J. Laville, P. Burger, D. Ha,ss, and G. Defago, Suppression of root diseases by Pseudomonas fluorescens CHAO importance of the bacterial secondary metabolite 2,4-diaceiylphloroglucinol, Molecular Plant-Microbe Interactions 5 4 (1992). [Pg.132]

Antibiotic substances and their molecular genetics are summarized for the best studied system of fluorescent Pseudomonas, producing up to. seven different compounds. Similar extensive studies should be done for other important rhizosphere bacteria as potential important antagonists for root pathogens. The best-studied example for the effects of vitamins in the rhizosphere is biotin. The molecular genetics of production and uptake of vitamins in the plant-microbe interaction is also a field of interesting future work. [Pg.217]

M. C. Bolanos-Vasquez and D. Werner, Effects of Rhizohium tropici, R. etii, and R. leguminosarum bv. phaseoU on nod gene-inducing flavonoids in root exudates of Phaseohis vulgaris. Molec. Plant Microbe Interact. 10 229 (1997). [Pg.218]

J. Lorquin, G. Lortet, M. Ferro, N. Mear, B. Dreyfus, J.-C. Prome, and C. Boivin, Nod factors from Sinorhizobium saheli and 5. teranga bv. sesbaniae are both arabi-nosylated and fucosylated, a structural feature specific to Sesbania rostrata symbionts. Molec. Plant Microbe Interact. I0 il9 (1997). [Pg.220]

M. Simons, A. J. van der Bij, I. Brand, L. A. de Weger, C. A. Wijffelman, and B. J. J. Lugtenberg, Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Molec. Plant Microbe Interact. 9 600 (1996). [Pg.222]

W. R. Streit, C. M. Joseph, and D. A. Phillips, Biotin and other water-soluble vitamins are key growth factors for alfalfa rhizosphere colonization by Rhizobium meli-loti 1021. Molec. Plant Microbe Interact. 5 330 (1996). [Pg.222]

J. M. Costa and J. E. Loper, Characterization of siderophore production by the biological control agent Enterohacter cloacae. Mol. Plant Microb. Interact. 7 440 (1994). [Pg.260]

J. M. Raaijmakers and D. M. Weller. Natural plant protection by 2,4-diacetylphlo-roglucinol-producing Pseudomonas spp. In take-all decline soils. Mol. Plant Microb. Interact. /7 144 (1988). [Pg.260]

M. J. Harrison and R. A. Dixon, Isoflavonoids accumulation and expression of defense gene transcripts during the establi.shment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol. Plant-Microbe Interact. 6 ... [Pg.290]

G. Becard, L. P. Taylor, D. D. Douds, P. E. Pfeffer, and L. W. Doner. Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbiosis. Mol. Plant-Microbe Interact. 8 525 (1995). [Pg.290]

P. Laurent, D. Tagu, D. De Carvalho, U. Nchls, R. De Beilis, R. Balestrini, G. Bauw, D. Inzc, P. Bonfante, and F. Martin, A novel class of cell wall polypeptides in PisoUthus tinctorius contain a cell-adhesion RGD motif and are up-regulated during the development of Eucalyptus globulus ectomycorrhiza. Molecular Plant Microbe Interactions (MPM ) 72 862-871 (1999). [Pg.292]

H. Liu, A. T. Trieu, L. A. Blaylock, and M. J. Harrison, Cloning and characterization of two phosphate transporters from Medicago truncatula roots Regulation in response to phosphate and to colonization by arbuscular mycorrhizal fungi. Mol. Plant-Microbe Interact. 11 A (1998). [Pg.294]

In this sen.se, in natural environments, the plant needs can be fulfilled by less strict, but more homogeneously extended plant-microbe interactions, such as those that cereals undertake with free nitrogen fixers (e.g., azospirilli or cyanobacteria), and that often involve not only nitrogen exchange but also hormones and other signals. [Pg.303]

D. A. Klein, J. L. Salzwedel, and F. B. Dazzo, Microbial colonization of plant roots. Biotechnology of Plant-Microbe Interactions (J. P. Nakas and C. Hagedorn, eds.), McGraw-Hill Publishing Company, New York, 1990. [Pg.321]

H. P. Spaink, Flavonoids as regulators of plant development, Phytochemical Signal.s and Plant-Microbe Interactions (Romeo, ed.). Plenum Press, New York, 1998. [Pg.322]

H. P. Spaink, O. Geiger. D. M. Sheeley, A. A. N. Van Brussel, W. S. York, V. N. Reinhold, B. J. J. Lugtenberg, and E. P. Kennedy, The biochemical function of the Rhizobium leguminosarum proteins involved in the production of host-specific signal molecules. Advances in Molecular Genetics of Plant-Microbe Interactions. Vol. 1 (H. Hennecke and D. P. S. Verma, eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991. [Pg.322]

A. Garcia de los Santos, and S. Brom, Gharacterization of two plasmid-bome EPS Ploci of Rhizobium etli required for lipopolisaccharide synthesis and for optimal interaction with plants. Mol. Plant Microbe Interact. 10 891-902 (1997). [Pg.322]

J. L. Henriques-Saba, A. Squartini, and M. P. Nuti, Nodulation of legumes under alkaline conditions. The case of Hedysarum coronarium. 8" International Congress on Molecular Plant Microbe Interactions, Knoxville, TN, July 14-19, 1996. [Pg.325]


See other pages where Plant-microbe interactions is mentioned: [Pg.203]    [Pg.282]    [Pg.307]    [Pg.308]    [Pg.328]    [Pg.329]    [Pg.330]    [Pg.345]    [Pg.844]    [Pg.99]    [Pg.187]    [Pg.296]    [Pg.303]   
See also in sourсe #XX -- [ Pg.329 ]




SEARCH



Flavonoids plant-microbe interactions

Microbes

Phytoremediation plant-microbe interactions

Plant interactions

Plant-microbe interactions antimicrobial activity

Plant-microbe interactions chemicals

Plant-microbe interactions microbes, beneficial

© 2024 chempedia.info