Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenols reaction with sulfonic acid

The axial immobilization of chiral [Mn((S,S)-salen )j (where salen = (Si,Sj-NiN -bis(3,5-diR -salicylidene)-l,2-diRbethane-diamine R = Bu, R -R = -(CH2)4- R = Bu, R = Ph R = Pn, R R = -(CH2)4-) complexes was achieved by reaction of [Mn(salen )Cl] with sulfonic acid- or phenol-substituted crosslinked and insoluble polystyrene resins [45]. The resulting polymer-immobilized [Mn(salen )j complexes were active and enantioselective for the asymmetric epoxidation of... [Pg.178]

Dinitroresorcine (DNR) forms two isomers 2,4 and 4,6. Unlike in the nitration of some other aromatic molecules (toluene, phenol), it is possible to prepare practically pure dinitro isomers. The position of nitro groups in the ring depends on the reaction conditimis. The 2,4-isomer of DNR can be easily prepared by dinitrosatimi of resorcinol followed by alkaline oxidation of 2,4-dinitrosoresorcinol [8,14]. 2,4-DNR cannot be prepared by sulfonation of resorcinol followed by reaction with nitric acid (method used for phenol) because this method yields the trinitro compound. The 4,6-DNR isomer can be prepared in two ways (a) by nitration of 4,6-diacetylresorcinol and (b) directly by nitration of resorcinol using 98 % nitric acid at low temperatures (between —20 and —15 °C) [8],... [Pg.133]

Karimi et al. reported a variety of water-tolerant ordered nanoporous silicas functionalized with sulfonic acids for the Pechmann reaction, satisfying both recyclability and reactivity [65]. More recently, some of the authors developed a new family of periodic mesoporous silica chloride (PMSCl) synthesized by direct chlorination of SBA-15 with thionyl chloride the resulting material with 2D-hexagonal symmetry showed both high loading of Si-Cl moieties and thermal stability [66]. PMSCl efficiently catalyzed the synthesis of coumarins from a variety of phenols and ethyl acetoacetate, at 403 K, even much more than other sulfonic acids supporting mesoporous silicas, yielding coumarin 17 in almost quantitative yield in only Ih of reaction time. [Pg.384]

Reaction of benzenesulfomc acid with sodium hy droxide This is the oldest method for the prepara tion of phenol Benzene is sulfonated and the ben zenesulfonic acid heated with molten sodium hy droxide Acidification of the reaction mixture gives phenol... [Pg.1000]

Substitution Reactions on Side Chains. Because the benzyl carbon is the most reactive site on the propanoid side chain, many substitution reactions occur at this position. Typically, substitution reactions occur by attack of a nucleophilic reagent on a benzyl carbon present in the form of a carbonium ion or a methine group in a quinonemethide stmeture. In a reversal of the ether cleavage reactions described, benzyl alcohols and ethers may be transformed to alkyl or aryl ethers by acid-catalyzed etherifications or transetherifications with alcohol or phenol. The conversion of a benzyl alcohol or ether to a sulfonic acid group is among the most important side chain modification reactions because it is essential to the solubilization of lignin in the sulfite pulping process (17). [Pg.139]

The reaction is completed after 6—8 h at 95°C volatiles, water, and some free phenol are removed by vacuum stripping up to 140—170°C. For resins requiring phenol in only trace amounts, such as epoxy hardeners, steam distillation or steam stripping may be used. Both water and free phenol affect the cure and final resin properties, which are monitored in routine quaHty control testing by gc. OxaHc acid (1—2 parts per 100 parts phenol) does not require neutralization because it decomposes to CO, CO2, and water furthermore, it produces milder reactions and low color. Sulfuric and sulfonic acids are strong catalysts and require neutralization with lime 0.1 parts of sulfuric acid per 100 parts of phenol are used. A continuous process for novolak resin production has been described (31,32). An alternative process for making novolaks without acid catalysis has also been reported (33), which uses a... [Pg.297]

Sulfation by sulfamic acid has been used ia the preparation of detergents from dodecyl, oleyl, and other higher alcohols. It is also used ia sulfating phenols and phenol—ethylene oxide condensation products. Secondary alcohols react ia the presence of an amide catalyst, eg, acetamide or urea (24). Pyridine has also been used. Tertiary alcohols do not react. Reactions with phenols yield phenyl ammonium sulfates. These reactions iaclude those of naphthols, cresol, anisole, anethole, pyrocatechol, and hydroquinone. Ammonium aryl sulfates are formed as iatermediates and sulfonates are formed by subsequent rearrangement (25,26). [Pg.62]

The cleavage products of several sulfonates are utilized on an industrial scale (Fig. 3). The fusion of aromatic sulfonates with sodium hydroxide [1310-73-2J and other caustic alkalies produces phenohc salts (see Alkylphenols Phenol). Chlorinated aromatics are produced by treatment of an aromatic sulfonate with hydrochloric acid and sodium chlorate [7775-09-9J. Nitriles (qv) (see Supplement) can be produced by reaction of a sulfonate with a cyanide salt. Arenesulfonates can be converted to amines with the use of ammonia. This transformation is also rather facile using mono- and dialkylamines. [Pg.96]

ButylatedPhenols and Cresols. Butylated phenols and cresols, used primarily as oxidation inhibitors and chain terrninators, are manufactured by direct alkylation of the phenol using a wide variety of conditions and acid catalysts, including sulfuric acid, -toluenesulfonic acid, and sulfonic acid ion-exchange resins (110,111). By use of a small amount of catalyst and short residence times, the first-formed, ortho-alkylated products can be made to predominate. Eor the preparation of the 2,6-substituted products, aluminum phenoxides generated in situ from the phenol being alkylated are used as catalyst. Reaction conditions are controlled to minimise formation of the thermodynamically favored 4-substituted products (see Alkylphenols). The most commonly used is -/ fZ-butylphenol [98-54-4] for manufacture of phenoHc resins. The tert-huty group leaves only two rather than three active sites for condensation with formaldehyde and thus modifies the characteristics of the resin. [Pg.372]

An aiyl methane- or toluenesulfonate ester is stable to reduction with lithium aluminum hydride, to the acidic conditions used for nitration of an aromatic ring (HNO3/HOAC), and to the high temperatures (200-250°) of an Ullman reaction. Aiyl sulfonate esters, formed by reaction of a phenol with a sulfonyl chloride in pyridine or aqueous sodium hydroxide, are cleaved by warming in aqueous sodium hydroxide. ... [Pg.168]

Acid catalysts, such as metal oxides and sulfonic acids, generally catalyze condensation polymerizations. However, some condensation polymers form under alkaline conditions. For example, the reaction of formaldehyde with phenol under alkaline conditions produces methy-lolphenols, which further condense to a thermosetting polymer. [Pg.314]

Sulfonic esters are most frequently prepared by treatment of the corresponding halides with alcohols in the presence of a base. The method is much used for the conversion of alcohols to tosylates, brosylates, and similar sulfonic esters. Both R and R may be alkyl or aryl. The base is often pyridine, which functions as a nucleophilic catalyst, as in the similar alcoholysis of carboxylic acyl halides (10-21). Primary alcohols react the most rapidly, and it is often possible to sulfonate selectively a primary OH group in a molecule that also contains secondary or tertiary OH groups. The reaction with sulfonamides has been much less frequently used and is limited to N,N-disubstituted sulfonamides that is, R" may not be hydrogen. However, within these limits it is a useful reaction. The nucleophile in this case is actually R 0 . However, R" may be hydrogen (as well as alkyl) if the nucleophile is a phenol, so that the product is RS020Ar. Acidic catalysts are used in this case. Sulfonic acids have been converted directly to sulfonates by treatment with triethyl or trimethyl orthoformate HC(OR)3, without catalyst or solvent and with a trialkyl phosphite P(OR)3. ... [Pg.576]

Phenol was originally recovered during the coking of coal, essentially being a by-product. Eventually, commercial routes were developed based on benzene (from coal or petroleum) for example, sulfonation of benzene to ben-zenesulfonic acid followed by reaction with water to phenol plus regenerated sulfuric acid. Phenol is used to make plastics (phenol-formaldehyde and epoxy resins) and textile fibers (nylon). Phenol is also used in solution as a general disinfectant for cleaning toilets, stables, floors, drains, etc. and is used both internally and externally as a disinfectant for animals. [Pg.87]

For many years phenol was made on a large industrial scale from the substitution reaction of benzene sulfonic acid with sodium hydroxide. This produced sodium sulfite as a by-product. Production and disposal of this material, contaminated with aromatic compounds, on a large scale contributed to the poor economics of the process, which has now been replaced by the much more atom economic cumene route (see Chapter 2, Schemes 2.2 and 2.3). [Pg.27]

Diazoalkanes alkylate acidic and enolic groups rapidly and other groups with replaceable hydrogens slowly. Carboxylic and sulfonic acids, phenols and enols are alkylated virtually instantaneously when treated with this reagent. Lewis acid catalysts (e.g., BF3.Et20) are used to promote the reaction of... [Pg.437]

Imidazolides of aromatic sulfonic acids react much more slowly in alcoholysis reactions than the carboxylic acid imidazolides. Although the reaction with phenols is quantitative when a melt is heated to 100 °C for several hours, with alcohols under these conditions only very slight alcoholysis is observed. In the presence of 0.05 equivalents (catalytic amount) of sodium ethoxide, imidazole sodium, of NaNH2, however, imidazolides of sulfonic acids react with alcohols almost quantitatively and exothermically at room temperature in a very short time to form sulfonic acid esters (sulfonates). (If the ratio of sulfonic acid imidazolide to alcoholate is 1 2, ethers are formed see Chapter 17). The mechanism of catalysis by base corresponds to that operative in the synthesis of carboxylic esters by the imidazolide method. Because of the more pronounced nucleophilic character of alkoxide ions, sulfonates can also be prepared in good yield by alcoholysis of their imidazolides in the presence of hydroxide ions i.e., with alcoholic sodium hydroxide. 45 Examples of syntheses of sulfonates are presented below. [Pg.224]

Experimental Procedure. Morwell brown coal was solubilised by reacting with phenol, in the presence of para toluene sulfonic acid, at 1830C, and the reaction product was then separated into four fractions and analysed according to procedures described elsewhere (lj. The structural characteristics of the four fractions as determined by the present work and confirmed by reference to the literature ( ,3) are summarised in Table I. As these characteristics are influenced to some extent by the presence of chemically combined phenol, the content of this in each fraction is also estimated. [Pg.243]

BF3.OH2).217 The use of a sulfonated phenol-formaldehyde polymer in conjunction with formic acid is also reported.208 Acids that are ineffective include phosphoric,208 trichloroacetic, dichloroacetic, and acetic acids.134 It is reported that addition of lithium perchlorate to the reaction mixture improves product... [Pg.33]

Tyrer A process for making phenol by first sulfonating benzene. Benzene vapor was passed through hot sulfuric acid the excess of benzene served to remove the water formed in the reaction. The benzene sulfonic acid was then hydrolyzed by fusion with sodium hydroxide. Invented by D. Tyrer in 1916. See also Dennis-Bull. [Pg.276]

Transalkylation involves the transfer of alkyl groups between aromatic nuclei, usually in the presence of strong Lewis acids. Heredy and Neuworth used this reaction to "depolymerize" coal. As a result of the reaction of coal with BF3 and phenol, the solubility of coal in phenol or pyridine increased substantially. Various modifications of this reaction have since been reported . Transall lation reactions in the presence of trifluoromethane sulfonic acid and aromatic hydrocarbons have recently been used by Benjamin et al. and Farcasiu et al. to identify structural features in coals and heavy petroleum ends, respectively. [Pg.302]


See other pages where Phenols reaction with sulfonic acid is mentioned: [Pg.72]    [Pg.135]    [Pg.1416]    [Pg.276]    [Pg.267]    [Pg.15]    [Pg.419]    [Pg.83]    [Pg.199]    [Pg.200]    [Pg.86]    [Pg.122]    [Pg.782]    [Pg.81]    [Pg.494]    [Pg.702]    [Pg.38]    [Pg.288]    [Pg.480]    [Pg.62]    [Pg.319]    [Pg.92]    [Pg.296]    [Pg.210]    [Pg.132]    [Pg.269]    [Pg.165]   


SEARCH



Acidic phenols

Phenol acidity

Phenol acids

Phenol phenolation reaction

Phenol reactions

Phenol sulfonation

Phenol sulfonic acid

Phenolates, reactions

Phenolation reaction

Phenolic acidity

Phenolic acids

Phenolics phenolic acids

Phenols reactions with

Reaction sulfonates

Reaction with phenolates

Reaction with sulfones

Reaction with sulfonic acids

Sulfonation reaction

Sulfonic acids reaction

© 2024 chempedia.info