Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenolic resin formation

Analysis of C-NMR spectra measured during the reaction gives information about relative reactivities of phenolic compounds [235], about relative reactivities of the different positions of the phenolic nucleus [236,237], and about polymer composition [64,74,234,235,238], These assays can also be used for a kinetic analysis of phenolic resin formation [232], A combination of liquid and solid state NMR allows the whole crosslinking process to be monitored or quantified. [Pg.678]

The polybenzoxazines (PBZs) provide a new class of phenolic resins that were first described by Ishida in 1998 (Ref. 15). Synthesis of the resins involves three components a phenol, a primary amine and formaldehyde. The first stage involves the formation of a multifunctional benzoxazine monomer Figure 23.30 a)). The monomer can then be ring-opened at elevated temperatures (160-220 C) to yield a polymeric stmcture (Figure 23.30(b)). [Pg.666]

The high heat resistance produced by adding phenolic resins to solvent-borne CR adhesives is due to the formation of the infusible resinate, which reduces the thermoplasticity of the adhesive and provides good bond strength up to 80°C (Table 11). The resinate also increases the adhesive bond strength development by accelerating solvent release. 4 phr of magnesium oxide for 40 phr of phenolic resin are sufficient to produce a room temperature reaction. A small amount of water (1-2 phr) is necessary as a catalyst for the reaction. Furthermore, the solvent... [Pg.662]

Phenolic resins were the first totally synthetic plastics invented. They were commercialized by 1910 [I]. Their history begins before the development of the structural theory of chemistry and even before Kekule had his famous dreams of snakes biting their tails. It commences with Gerhardt s 1853 observations of insoluble resin formation while dehydrating sodium salicylate [2]. These were followed by similar reports on the behavior of salicylic acid derivatives under a variety of reaction conditions by Schroder et al. (1869), Baeyer (1872), Velden (1877), Doebner (1896 and 1898), Speyer (1897) and Baekeland (1909-1912) [3-17]. Many of these early reports appear to involve the formation of phenolic polyesters rather than the phenol-aldehyde resins that we think of today. For... [Pg.869]

Adolph Baeyer is credited with the first recognition of the general nature of the reaction between phenols and aldehydes in 1872 ([2,5-7] [18], Table 5.1). He reported formation of colorless resins when acidic solutions of pyrogallic acid or resorcinol were mixed with oil of bitter almonds, which consists primarily benzaldehyde. Baeyer also saw resin formation with acidic and basic solutions of phenol and acetaldehyde or chloral. Michael and Comey furthered Baeyer s work with additional studies on the behavior of benzaldehyde and phenols [2,19]. They studied a variety of acidic and basic catalysts and noted that reaction vigor followed the acid or base strength of the catalyst. Michael et al. also reported rapid oxidation and darkening of phenolic resins when catalyzed by alkaline materials. [Pg.870]

The formation of a phenolic resin is often formally separated into two steps, though it probably should be three. If we use a three-step model, the first step is activation of the phenol or aldehyde. The second step is methylolation, and the third is condensation or chain extension. In addition to the clarity provided by the formalism, these steps are also generally separated in practice to provide maximum control of exothermic behavior, with the strategy being to separate the exotherm from each step from that of the others as much as possible. As there are significant differences in the activation step and in the details of the methylolation and condensations steps of novolacs and resoles, we will treat the two types separately. [Pg.880]

The mechanism of this reaction has been studied by several groups [133,174-177]. The consensus is that interaction of ester with the phenolic resole leads to a quinone methide at relatively low temperature. The quinone methide then reacts rapidly leading to cure. Scheme 11 shows the mechanism that we believe is operative. This mechanism is also supported by the work of Lemon, Murray, and Conner. It is challenged by Pizzi et al. Murray has made the most complete study available in the literature [133]. Ester accelerators include cyclic esters (such as y-butyrolactone and propylene carbonate), aliphatic esters (especially methyl formate and triacetin), aromatic esters (phthalates) and phenolic-resin esters [178]. Carbamates give analogous results but may raise toxicity concerns not usually seen with esters. [Pg.916]

This chapter emphasizes the recent mechanistic and kinetic findings on phenolic oligomer syntheses and network formation. The synthesis and characterization of both novolac- and resole-type phenolic resins and dieir resulting networks are described. Three types of networks, novolac-hexamethylenetetramine (HMTA),... [Pg.375]

Ester-cured alkaline phenolic system. The resin is an alkaline phenolic resin (essentially the same as the self-hardening resins of this type). Sand is mixed with the resin and blown or manually packed into a core box. A vaporized ester, methyl formate, is passed through the sand, hardening the binder. The total resin and peroxide addition is 1.5%. Compression strengths of 5000 kPa (700 psi) are possible. [Pg.160]

Heterogeneous catalysts, particularly zeolites, have been found suitable for performing transformations of biomass carbohydrates for the production of fine and specialty chemicals.123 From these catalytic routes, the hydrolysis of abundant biomass saccharides, such as cellulose or sucrose, is of particular interest. The latter disaccharide constitutes one of the main renewable raw materials employed for the production of biobased products, notably food additives and pharmaceuticals.124 Hydrolysis of sucrose leads to a 1 1 mixture of glucose and fructose, termed invert sugar and, depending on the reaction conditions, the subsequent formation of 5-hydroxymethylfurfural (HMF) as a by-product resulting from dehydration of fructose. HMF is a versatile intermediate used in industry, and can be derivatized to yield a number of polymerizable furanoid monomers. In particular, HMF has been used in the manufacture of special phenolic resins.125... [Pg.69]

Model of Dissolution. Based on the results described above, a model for the dissolution of phenolic resins in aqueous alkali solutions 1s proposed. The model 1s adapted from Ueberrelter s description for polymer dissolution 1n organic solvents (.21). In Ueberrelter s model, the dissolution process takes place 1n several steps with the formation of (a) a liquid layer containing the dissolved polymer, (b) a gel layer, (c) a solid swollen layer, (d) an infiltration layer, and (e) the unattacked polymer. The critical step which controls the dissolution process is the gel layer. In adapting h1s model to our case, we need to take into account the dependence of solvation on phenolate ion formation. There 1s a partition of the cation and the hydroxide ion between the aqueous solution and the solid phase. The... [Pg.378]

T. K. Reiser, A. Macromolecules, in press.). The concentration dependence comes form the "opening" up of the secondary structure of the phenolic resin as the progressive formation of phenolate Ions leads to higher degree of solvation and more facile diffusion paths. [Pg.383]

Urea and melamine are tetra- and hexa-functional molecules. However, the formation of a network polymer is prevented by adding alcohols such as w-butanol and by condensing with formaldehyde at low temperatures under basic conditions. While phenol resins have better moisture and weather resistance than urea resins, the latter are preferred for light-colored... [Pg.121]

Cure Rate of the Phenolated SEL Resins. 13C NMR spectra of the phenolated SEL formaldehyde-treated resins revealed the formation of methylol groups. A similar cure reaction to resole type phenolic resins is expected to occur with the phenolated lignin-based resins. Since cure rate normally determines production capacity of a board mill, it is important that new types of adhesives have at least the same cure rate as the conventional phenolic adhesives. Cure analysis of resins has usually been examined by... [Pg.342]

Very recently, attempts have been made to develop PP/EOC TP Vs. In order to make TPVs based on PP/EOC blend systems, phenolic resin is ineffective because the latter needs the presence of a double bond to form a crosslinked network structure. Peroxides can crosslink both saturated and unsaturated polymers without any reversion characteristics. The formation of strong C-C bonds provides substantial heat resistance and good compression set properties without any discoloration. However, the activity of peroxide depends on the type of polymer and the presence of other ingredients in the system. It has been well established that PP exhibits a (3-chain scission reaction (degradation) with the addition of peroxide. Hence, the use of peroxide only is limited to the preparation of PP-based TPVs. Lai et al. [45] and Li et al. [46] studied the fracture and failure mechanism of a PP-metallocene based EOC based TPV prepared by a peroxide crosslinking system. Rajesh et al. [Pg.229]

ButylatedPhenols and Cresols. Butylated phenols and cresols, used primarily as oxidation inhibitors and chain terminators, are manufactured by direct alkylation of the phenol using a wide variety of conditions and acid catalysts, including sulfuric acid, -toluenesulfonic acid, and sulfonic acid ion-exchange resins (110,111). By use of a small amount of catalyst and short residence times, the first-formed, ortho-alkylated products can be made to predominate. For the preparation of the 2,6-substituted products, aluminum phenoxides generated in situ from the phenol being alkylated are used as catalyst. Reaction conditions are controlled to minimize formation of the thermodynamically favored 4-substituted products (see Alkylphenols). The most commonly used is -/ -butylphenol [98-54-4] for manufacture of phenolic resins. The tert- butyl group leaves only two rather than three active sites for condensation with formaldehyde and thus modifies the characteristics of the resin. [Pg.372]

As indicated by the structures of these molecules, the A ring contains resorcinol phenolic hydroxyls, while the B ring contains the catechol or adjacent phenolic hydroxy groups, both of which would be expected to be highly reactive in resin formation. This high reactivity would also hold for the condensed tannins present in the bark extract, since they are polymeric flavonoids (14). [Pg.249]

Much interest has centred on the branch of cyclophanes known as calixarenes. They are polyphenol systems that can act as hosts in the formation of inclusion compounds, where a small guest molecule resides completely in a cavity within a single host they are cone-shaped cavitands . Several accounts have appeared of their history. The discovery by Baeyer of a formaldehyde/phenol resin led to Bakelite and to the work of A. Zincke and E. Ziegler, who gave to the first oligomer a tetrameric structure of a calix[4]arene. Later syntheses by Gutsche (1978) led to calixarenes with 4, 6 or 8 phenol residues.107-109... [Pg.63]

Phenolic resins have a low flammability by themselves due to the high aromatic content which leads to a high char formation on thermal degradation. However, end-capped brominated epoxy resins are used when necessary. Decabromodiphenyl ether in combination with antimony oxide is also used. [Pg.90]

Modification of porous inorganic materials by carbon makes it possible to obtain porous carboniferous composites with high thermal and chemical stability and strength. To introduce carbon into pores, both gas phase pyrolysis and carbonization through thermochemical solid-phase reactions are employed. The formation of carbon structures depends on carbonization conditions process rate, precursor concentration, presence of catalyst, etc. [1-3]. Phenolic resins, polyimides, carbohydrates, condensed aromatic compounds are most widely used as polymeric and organic precursors[4-6]. [Pg.521]

Table 7.1 Some of the substrates used for peroxidase-mediated formation of phenolic resins... Table 7.1 Some of the substrates used for peroxidase-mediated formation of phenolic resins...

See other pages where Phenolic resin formation is mentioned: [Pg.839]    [Pg.839]    [Pg.419]    [Pg.745]    [Pg.639]    [Pg.659]    [Pg.24]    [Pg.937]    [Pg.407]    [Pg.408]    [Pg.433]    [Pg.27]    [Pg.45]    [Pg.339]    [Pg.163]    [Pg.136]    [Pg.241]    [Pg.299]    [Pg.347]    [Pg.369]    [Pg.222]    [Pg.224]    [Pg.150]    [Pg.365]    [Pg.419]    [Pg.745]    [Pg.1274]    [Pg.24]    [Pg.704]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Phenol formation

Phenol resin

Phenolic resins

Phenolics formation

© 2024 chempedia.info