Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Petroleum aromatic compounds from

Process Stream Separations. Differences in adsorptivity between gases provides a means for separating components in industrial process gas streams. Activated carbon in fixed beds has been used to separate aromatic compounds from lighter vapors in petroleum refining process streams (105) and to recover gasoline components from natural and manufactured gas (106,107). [Pg.535]

With the advent of computerized systems and readily available hardware, total luminescence is gaining adherents. Brownrigg and Hornig (63) and Hornig and Giering (64) have reported on the low-temperature total luminescence applied to weather oils. Warner et al. (65) at the University of Washington applied sophisticated pattern recognition techniques to resolve a model mixture of nine petroleum-type polynuclear aromatic compounds from the complex total luminescence emission-excitation matrix (EEM). [Pg.78]

FIGURE 14.2 Aromatic compounds from petroleum and coal and their uses. [Pg.319]

Qian, K., Rodgers, R.P, Hendrickson, C.L., Emmett, M.R., Marshall, A.G. (2001) Reading chemical fine print resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil. Energy Fuels, 15,492 98. [Pg.762]

RTLs are being considered for selective extraction either in macro or micro scale. The isolation of target compounds from chemical process systems for instance alcohols from fermentation liquors (Chapeaux et al., 2008 Swatloski et al., 2002 Najdanovic-Visak et al., 2002), aromatic compounds from petroleum products (Arce et al., 2007a,b Arce et al., 2009 Arce et al., 2008), aromatic sulfur-containing compounds (Mochizuki Sugawara, 2008 Alonso et al., 2007 E er et al., 2004) from diesel-fuel represent the use of ILs in large-scale processes. [Pg.322]

Cyclic Hydrocarbons. The cyclic hydrocarbon intermediates are derived principally from petroleum and natural gas, though small amounts are derived from coal. Most cycHc intermediates are used in the manufacture of more advanced synthetic organic chemicals and finished products such as dyes, medicinal chemicals, elastomers, pesticides, and plastics and resins. Table 6 details the production and sales of cycHc intermediates in 1991. Benzene (qv) is the largest volume aromatic compound used in the chemical industry. It is extracted from catalytic reformates in refineries, and is produced by the dealkylation of toluene (qv) (see also BTX Processing). [Pg.367]

Methyl- and dimethylnaphthalenes are contained in coke-oven tar and in certain petroleum fractions in significant amounts. A typical high temperature coke-oven coal tar, for example, contains ca 3 wt % of combined methyl- and dimethylnaphthalenes (6). In the United States, separation of individual isomers is seldom attempted instead a methylnaphtha1 ene-rich fraction is produced for commercial purposes. Such mixtures are used for solvents for pesticides, sulfur, and various aromatic compounds. They also can be used as low freezing, stable heat-transfer fluids. Mixtures that are rich in monomethyinaphthalene content have been used as dye carriers (qv) for color intensification in the dyeing of synthetic fibers, eg, polyester. They also are used as the feedstock to make naphthalene in dealkylation processes. PhthaUc anhydride also can be made from m ethyl n aph th al en e mixtures by an oxidation process that is similar to that used for naphthalene. [Pg.487]

Extraction Solvent. Dimethyl sulfoxide is immiscible with alkanes but is a good solvent for most unsaturated and polar compounds. Thus, it can be used to separate olefins from paraffins (93). It is used in the Institute Fransais du Pntrole (IFF) process for extracting aromatic hydrocarbons from refinery streams (94). It is also used in the analytical procedure for determining polynuclear hydrocarbons in food additives (qv) of petroleum origin (95). [Pg.112]

The precursors of dyes are called dye intermediates. They are obtained from simple raw materials, such as ben2ene and naphthalene, by a variety of chemical reactions. Usually, the raw materials are cycHc aromatic compounds, but acycHc precursors are used to synthesi2e heterocycHc intermediates. The intermediates are derived from two principal sources, coal tar and petroleum (qv). [Pg.285]

The petroleum industry is now the principal suppHer of ben2ene, toluene, the xylenes, and naphthalene (see BTX processing Feedstocks). Petroleum displaced coal tar as the primary source for these aromatic compounds after World War II because it was relatively cheap and abundantly available. However, the re-emergence of king coal is predicted for the twenty-first century, when oil suppHes are expected to dwindle and the cost of producing chemicals from coal (including new processes based on synthesis gas) will gradually become more competitive (3). [Pg.285]

Simple aromatic hydrocarbons come from two main sources coal and petroleum. Coal is an enormously complex mixture made up primarily of large arrays of benzene-like rings joined together. Thermal breakdown of coal occurs when it is heated to 1000 °C in the absence of air, and a mixture of volatile products called coal for boils off. Fractional distillation of coal tar yields benzene, toluene, xylene (dimethylbenzene), naphthalene, and a host of other aromatic compounds (Figure 15.1). [Pg.517]

Naphtha is a mixture of aliphatic hydrocarbons isolated from petroleum by distillation. When it is passed over a catalyst under the right conditions, carbon rings are formed, followed by the sphtting of hydrogen from the carbon rings to produce benzene, toluene, and other aromatic compounds. [Pg.139]

Unisulf [Unocal sulfur removal] A process for removing sulfur compounds from petroleum fractions, similar to the Stretford process, but including in the catalytic solution vanadium, a thiocyanate, a carboxylate (usually citrate), and an aromatic sulfonate complexing agent. Developed by the Union Oil Company of California in 1979, commercialized in 1985, and operated in three commercial plants in 1989. [Pg.281]

One particular method is designed to characterize Ce to C28+ petroleum hydrocarbons in soil as a series of aliphatic and aromatic carbon range fractions. The extraction methodology differs from other petroleum hydrocarbon methods because it uses n-pentane, not methylene chloride, as the extraction solvent. If methylene chloride is used as the extraction solvent, aliphatic and aromatic compounds cannot be separated. [Pg.206]

Petroleum refineries produce a stream of valuable aromatic compounds called the BTX, or benzene-toluene-xylenes (Ruthven 1984). The Cg compounds can be easily separated from the Ce and C compounds by distillation, and consist of ethyl benzene, o-xylene, m-xylene, and / -xylene. Ethyl benzene is the starting material for styrene, which is used to make polystyrene / -xylene is oxidized to make terephthalic acid, and then condensed with ethylene glycol to make polyester for fibers and films. The buyers of / -xylene are the manufacturers of terephthalic acid, such as BP-Amoco, who in turn sell to the fiber manufacturers such as DuPont and Dow. These are big and sophisticated companies that have strong research and engineering capabilities, and are used to have multiple suppliers. The eventual consumers of adsorbents are the public who consider polyester as one of the choices in fabric and garments, in competition with other synthetic and natural fibers. Their purchases are also dependent on personal income and prosperity. In times of recession, it is always possible for a consumer to downgrade to cheaper fibers and to wear old clothes for a longer period of time before new purchases. [Pg.321]

The vendor claims that the TDR process can be used to treat soil and sludge contaminated with polychlorinated biphenyls, polynuclear aromatic compounds, solvents, dioxins, furans, organic pesticides and herbicides, solvents, petroleum wastes, as well as nonhalogenated volatile and semivolatile compounds. The treated residuals from the process include recovered water, oil that can be used for recycling as an alternative fuel or for recycling or can be disposed, and clean soil that can be used as backfill. The volume of treated sludge is reduced by as much as 95% by this thermal process, depending on the initial level of contaminants. [Pg.443]

The historical development of aromatics production from petroleum is outlined, and the methods employed during World War II for the production of nitration grade toluene are described. Included is a discussion of methods of synthesizing and purifying benzene, xylenes, and aromatics of higher molecular weight both as mixtures and as pure compounds. Data are presented on the composition of the aromatic hydrocarbons available from typical hydroformates. Aromatics and mixtures thereof currently available from petroleum are listed. Some of the problems facing the industry in the field of aromatics production are discussed and the probable trend of future research is indicated. [Pg.301]

In addition to the sulfur compounds listed above, hydrogen sulfide has been found in many crude petroleums. Elemental sulfur has been definitely found in several crude petroleums by API Research Project 48 (23). Although Birch and Norris (5) isolated several disulfides from the spent caustic used in treating gasoline from Iranian petroleum, these compounds may have resulted from the oxidation of the thiols and their presence in the original petroleum is regarded as doubtful. Other types of sulfur compounds, such as thiophenes and aromatic thiols, have been identified in cracked petroleum products, but the presence of such compounds in naturally occurring petroleums has not yet been established. [Pg.337]

Mos of the solid carbonaceous material available to industry is derived from the pyrolysis of petroleum residues, coal, and coal tar residues. Understanding the reactions occurring during pyrolysis would be beneficial in conducting materials research on the manufacture of carbonaceous products. The pyrolysis of aromatic hydrocarbons has been reported to involve condensation and polymerization reactions that produce complex carbonaceous materials (I). Interest in the mechanism of pyrolysis of aromatic compounds is evidenced in a recent study by Edstrom and Lewis (2) on the differential thermal analysis of 84 model aromatic hydrocarbons. The study demonstrated that carbon formation was related to the molecular size of the compound and to energetic factors that could be estimated from ionization potentials. [Pg.680]

The principal source of aromatic compounds is coal tar, produced as a by-product in the manufacture of coke. Gas tar, of which much smaller quantities are produced, also contains these same materials. Aromatic hydrocarbons occur in nature in Borneo and other petroleums, and they may be prepared artificially by stripping hydrogen atoms from the cycloparaffins which occur in Caucasus petroleum and elsewhere. They are also produced from paraffin hydrocarbons by certain processes of cracking, and it is to be expected that in the future aromatic compounds will be produced in increasing quantity from petroleum which does not contain them in its natural state. [Pg.129]


See other pages where Petroleum aromatic compounds from is mentioned: [Pg.585]    [Pg.1693]    [Pg.7]    [Pg.1687]    [Pg.268]    [Pg.449]    [Pg.164]    [Pg.171]    [Pg.171]    [Pg.506]    [Pg.321]    [Pg.14]    [Pg.1794]    [Pg.9]    [Pg.257]    [Pg.124]    [Pg.211]    [Pg.117]    [Pg.187]    [Pg.53]    [Pg.220]    [Pg.250]    [Pg.306]    [Pg.128]    [Pg.23]    [Pg.363]    [Pg.1079]    [Pg.98]   
See also in sourсe #XX -- [ Pg.319 ]




SEARCH



From aromatic compounds

Petroleum aromatics

Petroleum compounds

© 2024 chempedia.info