Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Recovered gasoline

Process Stream Separations. Differences in adsorptivity between gases provides a means for separating components in industrial process gas streams. Activated carbon in fixed beds has been used to separate aromatic compounds from lighter vapors in petroleum refining process streams (105) and to recover gasoline components from natural and manufactured gas (106,107). [Pg.535]

Recovered gasoline can either be disposed of by incineration or reused. If the gasoline is to be reused, it must be refined or mixed with other gasoline as it gets degraded while in the soil. There are three processes that affect the degradation of gasoline ... [Pg.713]

The accompanying figure represents the schematic flowsheet of a distillation tower used to recover gasoline from the products of catalytic cracker. Is the problem completely specified, that is, is the number of degrees of freedom equal to zero for the purpose of calculating the heat transfer to the cooling water in the condenser ... [Pg.550]

The distillation section of the MTG unit consists of a deethaniser, stabiliser, gasoline splitter and lean oil/sponge absorber circuit for recovering gasoline from the deethaniser off-gas and product separator off-gas. [Pg.715]

Shortly after World War 1, activated carbon was employed to recover gasoline from natural gas. The plants were operated manually... [Pg.60]

Figure 1.1 illustrates the diversity of products derived from petroleum classified according to their distillation ranges and number of carbon atoms. From one crude to another, the proportions of the recovered fractions vary widely. A good illustration is the gasoline fraction (one of the most economically attractive) a crude from Qatar gives about 37 per cent by volume whereas a Boscan crude oil only yields 4.5%. [Pg.1]

This process thus enables gasoline production to be increased if the propylene can not be used for petrochemical manufacture. It recovers ethylene economically from fuel-gas. [Pg.376]

A breakdown of the mixed xylene supply sources in the United States is summarized in Table 1 (1). As shown in Table 1, the primary source of xylenes in the United States is catalytic reformate. In 1992, over 90% of the isolated xylenes in the United States were derived from this source. Approximately 9% of the recovered xylenes is produced via toluene disproportionation (TDP). In the United States, only negligible amounts of the xylenes are recovered from pyrolysis gasoline and coke oven light oil. In other parts of the world, pyrolysis gasoline is a more important source of xylenes. [Pg.410]

The majority of xylenes, which are mostly produced by catalytic reforming or petroleum fractions, ate used in motor gasoline (see Gasoline and other MOTORFUELs). The majority of the xylenes that are recovered for petrochemicals use are used to produce PX and OX. PX is the most important commercial isomer. Almost all of the PX is converted to terephthaUc acid and dimethylterephthalate, and then to poly(ethylene terephthalate) for ultimate use in fibers, films, and resins. [Pg.424]

Natural gas Hquids are recovered from natural gas using condensation processes, absorption (qv) processes employing hydrocarbon Hquids similar to gasoline or kerosene as the absorber oil, or soHd-bed adsorption (qv) processes using adsorbants such as siHca, molecular sieves, or activated charcoal. Eor condensation processes, cooling can be provided by refrigeration units which frequently use vapor-compression cycles with propane as the refrigerant or by... [Pg.171]

Total consumption of lead in the United States in 1993 reached 1,318,800 t. Of this, 766,000 t (58%) is allocated to battery use suppHed as either a mixed oxide or as metal. Approximately 95% of batteries are recycled and the lead recovered. In 1993, 908,000 t of lead came from secondary smelters and refiners compared to 350,000 t originating in primary mines and smelters (39). Approximately 51,000 t of lead was consumed in U.S. production of all oxides and chemicals appHcable to all industries other than batteries. Estimates include 8000 t for plastics, 6000 t for gasoline additives, 2000 t for mbber, and 30,000 t for ceramics, glass, and electronics. Lead is not used to any extent in dispersive appHcations such as coatings. [Pg.68]

LPG recovered from natural gas is essentially free of unsaturated hydrocarbons, such as propylene and butylenes (qv). Varying quantities of these olefins may be found in refinery production, and the concentrations are a function of the refinery s process design and operation. Much of the propylene and butylene are removed in the refinery to provide raw materials for plastic and mbber production and to produce high octane gasoline components. [Pg.182]

SASOL. SASOL, South Africa, has constmcted a plant to recover 50,000 tons each of 1-pentene and 1-hexene by extractive distillation from Fischer-Tropsch hydrocarbons produced from coal-based synthesis gas. The company is marketing both products primarily as comonomers for LLDPE and HDPE (see Olefin polymers). Although there is still no developed market for 1-pentene in the mid-1990s, the 1-hexene market is well estabhshed. The Fischer-Tropsch technology produces a geometric carbon-number distribution of various odd and even, linear, branched, and alpha and internal olefins however, with additional investment, other odd and even carbon numbers can also be recovered. The Fischer-Tropsch plants were originally constmcted to produce gasoline and other hydrocarbon fuels to fill the lack of petroleum resources in South Africa. [Pg.440]

Mesitylene can be synthesized from acetone by catalytic dehydrocyclization (17). Similarly, cyclotrimerization of acetylenes has produced PMBs such as hexamethylbenzene (18). Durene has been recovered from Methanex s methanol-to-gasoline (MTG) plant in New Zealand (19). [Pg.506]

Sasol Fischer-Tropsch Process. 1-Propanol is one of the products from Sasol s Fischer-Tropsch process (7). Coal (qv) is gasified ia Lurgi reactors to produce synthesis gas (H2/CO). After separation from gas Hquids and purification, the synthesis gas is fed iato the Sasol Synthol plant where it is entrained with a powdered iron-based catalyst within the fluid-bed reactors. The exothermic Fischer-Tropsch reaction produces a mixture of hydrocarbons (qv) and oxygenates. The condensation products from the process consist of hydrocarbon Hquids and an aqueous stream that contains a mixture of ketones (qv) and alcohols. The ketones and alcohols are recovered and most of the alcohols are used for the blending of high octane gasoline. Some of the alcohol streams are further purified by distillation to yield pure 1-propanol and ethanol ia a multiunit plant, which has a total capacity of 25,000-30,000 t/yr (see Coal conversion processes, gasification). [Pg.119]

Extractive distillation, using similar solvents to those used in extraction, may be employed to recover aromatics from reformates which have been prefractionated to a narrow boiling range. Extractive distillation is also used to recover a mixed ben2ene—toluene stream from which high quaUty benzene can be produced by postfractionation in this case, the toluene product is less pure, but is stiU acceptable as a feedstock for dealkylation or gasoline blending. Extractive distillation processes for aromatics recovery include those Hsted in Table 4. [Pg.312]


See other pages where Recovered gasoline is mentioned: [Pg.85]    [Pg.709]    [Pg.713]    [Pg.186]    [Pg.303]    [Pg.82]    [Pg.93]    [Pg.300]    [Pg.1951]    [Pg.4503]    [Pg.571]    [Pg.315]    [Pg.149]    [Pg.85]    [Pg.709]    [Pg.713]    [Pg.186]    [Pg.303]    [Pg.82]    [Pg.93]    [Pg.300]    [Pg.1951]    [Pg.4503]    [Pg.571]    [Pg.315]    [Pg.149]    [Pg.246]    [Pg.256]    [Pg.410]    [Pg.301]    [Pg.78]    [Pg.171]    [Pg.175]    [Pg.175]    [Pg.37]    [Pg.48]    [Pg.402]    [Pg.404]    [Pg.481]    [Pg.125]    [Pg.177]    [Pg.180]    [Pg.42]    [Pg.535]    [Pg.329]    [Pg.186]   
See also in sourсe #XX -- [ Pg.713 ]




SEARCH



Recovering

© 2024 chempedia.info