Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peroxide Detection Tests

Detection of TATP in the field has been problematic. Technologies have been developed that focus on the peroxide group. Of these tests, the most commonly available are field detection kits that rely on color changes brought on by chemical reactions. Mistral s PDK (Peroxide Detection Kit) offers chemical screening... [Pg.59]

Peroxide detection in organic solvents was previously discussed in Section 4.I.D. It is imperative that solvents suspected of peroxide contamination be tested, since an extreme explosion hazard results when peroxides are concentrated in the still pot during distillation. [Pg.219]

Discussion Chlorine can be recognized by its odor, by its color, and by its bleaching action on certain dyes, when it is present in fairly large amounts. Small amounts of chlorine can be detected by the action on a mixture of potassium iodide and starch, but as a similar action is produced by several other substances, such as bromine, ozone, and hydrogen peroxide, this test for chlorine can be used only when these substances are known to be absent. [Pg.61]

Except for HDPM, all the additives decrease the stoichiometric ratio. Oxidation in the presence of CsHuN and HDPM leads to precipitation of bis (dipivaloylmethanato) iron (III) ethoxide (38), and a small amount of acetaldehyde (0.2-0.5y) was also detected. Tests for peroxides were negative. Consequently, we believe that the chelating agents themselves (HAA, AA", and DPM") are oxidized by some transient involved in the reaction. [Pg.190]

Absolute diethyl ether. The chief impurities in commercial ether (sp. gr. 0- 720) are water, ethyl alcohol, and, in samples which have been exposed to the air and light for some time, ethyl peroxide. The presence of peroxides may be detected either by the liberation of iodine (brown colouration or blue colouration with starch solution) when a small sample is shaken with an equal volume of 2 per cent, potassium iodide solution and a few drops of dilute hydrochloric acid, or by carrying out the perchromio acid test of inorganic analysis with potassium dichromate solution acidified with dilute sulphuric acid. The peroxides may be removed by shaking with a concentrated solution of a ferrous salt, say, 6-10 g. of ferrous salt (s 10-20 ml. of the prepared concentrated solution) to 1 litre of ether. The concentrated solution of ferrous salt is prepared either from 60 g. of crystallised ferrous sulphate, 6 ml. of concentrated sulphuric acid and 110 ml. of water or from 100 g. of crystallised ferrous chloride, 42 ml. of concentrated hydiochloric acid and 85 ml. of water. Peroxides may also be removed by shaking with an aqueous solution of sodium sulphite (for the removal with stannous chloride, see Section VI,12). [Pg.163]

CAUTION. Ethers that have been stored for long periods, particularly in partly-filled bottles, frequently contain small quantities of highly explosive peroxides. The presence of peroxides may be detected either by the per-chromic acid test of qualitative inorganic analysis (addition of an acidified solution of potassium dichromate) or by the liberation of iodine from acidified potassium iodide solution (compare Section 11,47,7). The peroxides are nonvolatile and may accumulate in the flask during the distillation of the ether the residue is explosive and may detonate, when distilled, with sufficient violence to shatter the apparatus and cause serious personal injury. If peroxides are found, they must first be removed by treatment with acidified ferrous sulphate solution (Section 11,47,7) or with sodium sulphite solution or with stannous chloride solution (Section VI, 12). The common extraction solvents diethyl ether and di-tso-propyl ether are particularly prone to the formation of peroxides. [Pg.315]

Detecting the presence of small, even invisible, amounts of blood is routine. Physical characteristics of dried stains give minimal information, however, as dried blood can take on many hues. Many of the chemical tests for the presence of blood rely on the catalytic peroxidase activity of heme (56,57). Minute quantities of blood catalyze oxidation reactions between colorless materials, eg, phenolphthalein, luco malachite green, luminol, etc, to colored or luminescent ones. The oxidant is typically hydrogen peroxide or sodium perborate (see Automated instrumentation,hematology). [Pg.487]

ImmunO lSS iy. Chemiluminescence compounds (eg, acridinium esters and sulfonamides, isoluminol), luciferases (eg, firefly, marine bacterial, Benilla and Varela luciferase), photoproteins (eg, aequorin, Benilld), and components of bioluminescence reactions have been tested as replacements for radioactive labels in both competitive and sandwich-type immunoassays. Acridinium ester labels are used extensively in routine clinical immunoassay analysis designed to detect a wide range of hormones, cancer markers, specific antibodies, specific proteins, and therapeutic dmgs. An acridinium ester label produces a flash of light when it reacts with an alkaline solution of hydrogen peroxide. The detection limit for the label is 0.5 amol. [Pg.275]

Peroxide Formation. Except for the methyl alkyl ethers, most ethers tend to absorb and react with oxygen from the air to form unstable peroxides that may detonate with extreme violence when concentrated by evaporation or distillation, when combined with other compounds that give a detonable mixture, or when disturbed by heat, shock, or friction. Appreciable quantities of crystalline soHds have been observed as gross evidence for the formation of peroxides, and peroxides may form a viscous Hquid in the bottom of ether-fiHed containers. If viscous Hquids or crystalline soHds are observed in ethers, no further tests for the detection of peroxides are recommended. Several chemical and physical methods for detecting and estimating peroxide concentrations have been described. Most of the quaHtative tests for peroxides are readily performed and strongly recommended when any doubt is present (20). [Pg.427]

Analytical Methods. Most of the analytical and testing methods used for ethyl ether are conventional laboratory methods. Ethyl ether that is to be used for anesthetic purposes or in processes that involve heating or distiHation must be peroxide-free, and should pass the USP standard test with potassium iodide. This test detects approximately 0.001% peroxide as hydrogen peroxide. [Pg.427]

PSS-SG composite film was tested for sorption of heme proteins hemoglobin (Hb) and myoglobin (Mb). The peroxidaze activity of adsorbed proteins were studied and evaluated by optical and voltammetric methods. Mb-PSS-SG film on PG electrode was shown to be perspective for detection of dissolved oxygen and hydrogen peroxide by voltammetry with linear calibration in the range 2-30 p.M, and detection limit -1.5 p.M. Obtained composite films can be modified by different types of biological active compounds which is important for the development of sensitive elements of biosensors. [Pg.306]

Sakamoto [243] determined picomolar levels of cobalt in seawater by flow injection analysis with chemiluminescence detection. In this method flow injection analysis was used to automate the determination of cobalt in seawater by the cobalt-enhanced chemiluminescence oxidation of gallic acid in alkaline hydrogen peroxide. A preconcentration/separation step in the flow injection analysis manifold with an in-line column of immobilised 8-hydroxyquinoline was included to separate the cobalt from alkaline-earth ions. One sample analysis takes 8 min, including the 4-min sample load period. The detection limit is approximately 8 pM. The average standard deviation of replicate analyses at sea of 80 samples was 5%. The method was tested and inter calibrated on samples collected off the California coast. [Pg.167]

The flow-cell design was introduced by Stieg and Nieman [166] in 1978 for analytical uses of CL. Burguera and Townshend [167] used the CL emission produced by the oxidation of alkylamines by benzoyl peroxide to determine aliphatic secondary and tertiary amines in chloroform or acetone. They tested various coiled flow cells for monitoring the CL emission produced by the cobalt-catalyzed oxidation of luminol by hydrogen peroxide and the fluorescein-sensitized oxidation of sulfide by sodium hypochlorite [168], Rule and Seitz [169] reported one of the first applications of flow injection analysis (FTA) in the CL detection of peroxide with luminol in the presence of a copper ion catalyst. They... [Pg.28]

Hermann (2000) described a rapid automated method involving generation of a known amount of free radicals and the detection of the excess by photochemiluminescence. Test kits are available for determination of total water-soluble antioxidants, fat-soluble antioxidants and ascorbic acid. A luminometric method was developed for the determination of antioxidative activity and was subsequently applied to anthocyanin and betalaine colour concentrates (Kuchta et al., 1999). The method involved quantification of the interruption in luminescence from the hydrogen peroxide-horse radish peroxidase-luminol system in the presence of antioxidants. [Pg.131]

Other elements which occur in organic compounds, such as phosphorus, arsenic, other non-metals, and metals in organic combination, are detected by destroying the organic material by oxidation (with nitric acid in a sealed tube or by fusion with potassium nitrate or sodium peroxide) and then applying the usual tests. [Pg.45]

Lignin peroxidase activity, (i.e., peroxide-dependent oxidation of veratryl alcohol at pH 3) was not detected over the 30 days tested, while laccase appeared at day 7. Culture medium from day 7 onwards could also oxidize veratryl alcohol to aldehyde with concomitant conversion of oxygen to hydrogen peroxide. This activity, which was optimal at pH 5.0, was named veratryl alcohol oxidase (VAO). The extracellular oxidative enzyme activities (laccase and veratryl alcohol oxidase) could be separated by ion-exchange chromatography (Figure 2). Further chromatography of the coincident laccase and veratryl alcohol oxidase (peak 2), as described elsewhere (25) resulted in the separation of two veratryl alcohol oxidases from the laccase. [Pg.474]

The ozonide (4.3 grams) in ethyl acetate (25 ml.) was shaken with reduced platinum oxide (approximately 50 mg.) in a Burgess-Parr apparatus containing oxygen at 50 p.s.i.g. for 24 hours. The solution was aldehyde-free and gave a negative peroxide test. There was no detectable... [Pg.264]


See other pages where Peroxide Detection Tests is mentioned: [Pg.84]    [Pg.104]    [Pg.86]    [Pg.84]    [Pg.104]    [Pg.86]    [Pg.561]    [Pg.7]    [Pg.354]    [Pg.108]    [Pg.129]    [Pg.180]    [Pg.366]    [Pg.393]    [Pg.56]    [Pg.57]    [Pg.486]    [Pg.331]    [Pg.564]    [Pg.88]    [Pg.585]    [Pg.65]    [Pg.97]    [Pg.75]    [Pg.50]    [Pg.60]    [Pg.84]    [Pg.638]    [Pg.641]    [Pg.665]    [Pg.207]    [Pg.41]    [Pg.638]    [Pg.641]   


SEARCH



Peroxides detecting

Peroxides, detection

© 2024 chempedia.info