Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Perfluorosulfonic acid based polymers

Numerous polymers have been studied for their potential apphcation in PEMFCs. Based on their chemical structure, these polymers can be categorized into (a) vinylic polymers, (b) aromatic polymers, and (c) polymer blends and composite/hybrid polymers. Generally, vinylic polymers are synthesized by addition polymerization, while aromatic polymers are synthesized by step-growth polymerization. The most studied vinylic polymers for PEMFC applications are perfluorosulfonic acid ionomers (PFSls), in particular Nation , and styrene sulfonic acid-based polymers. Chemical structures of representative vinyhc PEMs are shown in Scheme 2. [Pg.63]

High-temperature proton exchange membrane fuel cells (HT-PEM fuel cells), which use modified perfluorosulfonic acid (PFSA) polymers [1—3] or acid-base polymers as membranes [4—8], usually operate at temperatures from 90 to 200 °C with low or no humidity. The development of HT-PEM fuel cells has been pursued worldwide to solve some of the problems associated with current low-temperature PEM fuel cells (LT-PEM fuel cells, usually operated at <90 °C) these include sluggish electrode kinetics, low tolerance for contaminants (e.g. carbon monoxide (CO)), and complicated water and heat management [4,5]. However, operating a PEM fuel cell at >90 °C also accelerates degradation of the fuel cell components, especially the membranes and electrocatalysts [8]. [Pg.247]

Water Flux in Polymer Electrolyte Membranes Water flux in the solid electrolyte membrane of the PEFC must be understood to grasp the concept of a local water balance in the fuel cell. From Chapter 5, we know that the ionic conductivity of perfluorosulfonic acid-based solid polymer electrolytes is a strong function of water content. Within the electrolyte, there are four basic modes of transport, as schematically illustrated in Figure 6.21 ... [Pg.310]

An adequate structure of polymer molecules promotes the advantageous phase separation into hydrophobic and hydrophilic domains upon water uptake. The most notable class of membranes based on this principle are the perfluorosulfonic acid ionomers (PFSI), Nafion [26] and similar membranes [27]. In these membranes, perfluorosulfonate side chains, terminated with hydrophilic —SO3H groups, are attached to a hydrophobic fluorocarbon backbone. The tendency of ionic groups to aggregate into ion clusters due to the amphiphilic nature of the ionomer leads to the formation of basic aqueous units. At sufficient humidity these units first get connected by narrow channels and then may even fuse to provide continuous aqueous pathways [28]. [Pg.451]

In the development of fuel-cell technology based on this unique polymer electrolyte, special chapters in electrochemical science and engineering have emerged, addressing the fuel-cell ionomeric membrane itself and the optimized fabrication of MEAs. The invention of Nafion, a poly(perfluorosulfonic acid) (poly(PFSA)) at DuPont in the 1960s, was, in fact, a key (if not the key) milestone in the development of PEFC technology. The chemical and mechanical properties of such poly(PFSA) extruded membranes, which are based on a perfluorocar-bon backbone, enabled to achieve stable materials properties and, consequently,... [Pg.545]

While a munber of alternative polymer membranes have been developed. Nation is still considered the benchmark of proton conducting polymer membranes, and has the largest body of research hterature devoted to its study. Alternative polymer membranes are almost invariably compared to Nation . Nation is a free radical initiated copolymer consisting of crystaUiz-able, hydrophobic tetrafluoroethylene and a perfluorinated vinyl ether terminated by perfluorosulfonic acid. Nation 117 possesses an equivalent weight of 1100 (EW = mass of dry ionized polymer (g) in the protonic acid form that would neutralize one equivalent of base). Thus, there are 13 perfluoro-methylene groups (-CF2-) ( = 6.5) between pendent ionic side chains. [Pg.63]

Y. Chang, G.F. Brunello, J. Puller, M.L. Disabb-Miller, M.E. Hawley, Y.S. Kim, M.A. Hickner, S.S. Jang, C. Bae, Polymer electrolyte membranes based on poly(arylene ether sulfone) with pendant perfluorosulfonic acid, Polym. Chem. 4 (2) (2013) 272-281. [Pg.96]

The principle of operation is shown in Fig. 2. Chlorine gas is produced at the anode (especially optimized dimensionally stable anode) with an anolyte feed concentration of 14 wt % HCl. Anode and cathode are separated by a cation exchange membrane (perfluorosulfonic acid polymer, PFSA, e.g., Nafion of DuPont). The ODC is based on a conductive carbon cloth which operates simultaneously as a gas diffusion layer because a suitable material is incorporated. The oxygen reduction reaction (5) takes place in three-phase boundaries of a thin, porous catalyst layer on the surface. [Pg.1033]

The MEA is composed of three main parts, e.g., polymer electrolyte membrane (PEM), gas diffusion medium, and catalyst layer (CL). The membrane, with hydrophilic proton-conducting channels embedded in a hydrophobic structural matrix, plays a key role in the operation of PEFCs. The PEMs for PEFCs commonly use perfluorosulfonic acid (PFSA) electrolytes such as Nation , with the chemical structure shown in Fig. 2, because of its high proton conductivity as well as chemical and thermal stability [1]. The gas diffusion medium (GDM), including both the microporous layer (MPL) and the gas diffusion layer (GDL), which typically is based on carbon fibers, is also an important component. The GDM is designed with three distinct... [Pg.1669]

The standard electrolyte material in PEFCs belongs to the fully fluorinated Teflon -based family similar to that produced by E.I. DuPont de Nemours for space application in the mid-1960s. The membrane is characterized by its equivalent weight (inversely proportional to the ion exchange capacity). A typical equivalent weight range is 800 to 1100 milliequivalents per dry gram of polymer. The type used most often in the past was a melt-extruded membrane manufactured by DuPont and sold under the label Nafion No. 117. The perfluorosulfonic acid family of... [Pg.90]

This chapter reviews characteristics and performance of modified sulfonic acid-based membranes, particularly composite membranes including inorganic fillers and short-side chain perfluorosulfonic membranes for intermediate temperature applications. The characteristics of these systems for operation in direct alcohol fuel cells, in polymer membrane (PEM) electrolyser and automotive PEM fuel cells are analyzed. [Pg.8]

Aquivion E87-12S short-side chain perfluorosulfonic acid (SSC-PFSA) membrane with equivalent weight (EW) of 870 g eq and 120 pm thickness produced by Solvay Specialty Polymers was tested in a polymer electrolyte membrane water electrolyser (PEMWE) and compared to a benchmark Nation N115 membrane (EW 1100 g eq ) of similar thickness [27]. Both membranes were tested in conjunction with in-house prepared unsupported Ir02 anode and carbon-supported Pt cathode electrocatalyst. The electrocatalysts consisted of nanosized Ir02 and Pt particles (particle size 2-4 nm). The electrochemical tests showed better water splitting performance for the Aquivion membrane and ionomer-based membrane-electrode assembly (MEA) as compared to Nafion (Fig. 2.21). Lower ohmic drop constraints and smaller polarization resistance were observed for the electrocatalyst-Aquivion ionomer interface indicating a better catalyst-electrolyte interface. A current density of 3.2 A cm for water... [Pg.29]

Excellent reviews on chemical structure, morphology and properties of acid-bearing polymers can be found in Mauritz and Moore (2004), Peckham and Holdcroft (2010) and Yang et al. (2008). The base polymer of the prototypical DuPont Nafion perfluorosulfonic acid (PFSA) ionomer, shown in Figure 1.13(left), consists of a tetrafluoroethylene (TFE) backbone with randomly attached pendant sidechains of perfluorinated vinyl ethers. Sulfonic acid groups are fixed at the sidechain heads (Kreuer et al., 2004 Tanimura and Matsuoka, 2004 Yang et al., 2008 Yoshitake and Watakabe, 2008). [Pg.36]

Based on the ion-cluster model of the perfluorosulfonic acid polymer, shown in Fig. 5, flie change in flie concentration of the cations and water transfer into those which are calculated by Eqs. 21,22, and 23 results in the pressure state in the cluster by using flie following relations ... [Pg.141]

Abstract During the last two decades, extensive efforts have been made to develop alternative hydrocarbon-based polymer electrolyte membranes to overcome the drawbacks of the current widely used perfluorosulfonic acid Nafion. This chapter presents an overview of the synthesis, chemical properties, and polymer electrolyte fuel cell applications of new proton-conducting polymer electrolyte membranes based on sulfonated poly(arylene ether ether ketone) polymers and copolymers. [Pg.51]

In perfluorinated ionomers, a PTFE-based polymeric backbone offers chemical stability from the radical species or acid-base, which causes hydrolytic degradation of the polymer chain. Ionic conductivity is provided by pendant acidic moiety in carboxylate or sulfonate form. There are some reports on perfluorinated carboxylic acid (PFCA) materials, most of which are derived from Nafion [26-29]. However, PFCA is not suitable for fuel cell application due to its low proton conductivity. Perfluorosulfonic acid (PFSA) is the most favored choice among not only perfluorinated membranes but all other ionomers in fuel cell applications. Sulfonic acid form of Nafion is a representative PFSA and thus has been intensively studied since 1960s. Reported chemical structure of Nafion membrane is given in Fig. 13.8. [Pg.317]

Some vinyl fluoride-based polymers with side chains of perfluorosulfonic acid (the Nation family) are important ion-exchange membrane materials used in practice for electrolysis of NaCl and in certain fuel cells. They show a proton conductivity of 0.01 S cm- at room temperature. However, such fast ionic transport occurs only when they are swollen with water. It is therefore not appropriate to call them solid electrolytes in the tme sense of the word. It was in 1970 that anionic conductivity, though not high, was reported for crown ether complexes such as dibenzo-18-crown-6 KSCN, in which cations are trapped by the ligand. " A few years later much higher cationic (instead of anionic) conduction was found in complexes of a chain-like polyether such as PEO or PPO with alkaline salts here, PEO stands for poly(ethyleneoxide), (CHjCHj-O), and PPO for poly(propyleneoxide)."2>"3 These were the flrst examples of tme polymer solid electrolytes and were followed by a great number of studies. Polymeric electrolytes are advantageous in practice because they are easily processed and formed into flexible Aims. [Pg.223]

Chang Y, Brunello GF, Fuller J, et al. Polymer electrolyte membranes based on poly(arylene ether sulfone) with pendant perfluorosulfonic acid. Polym Chem. 2013 4 272-281. [Pg.38]

PVP2 Nafion Nafion(perfluorosulfonic acid polymer) appears partiaEy miscible with PVF2 based on melting point depression and dielectric analysis 253... [Pg.130]


See other pages where Perfluorosulfonic acid based polymers is mentioned: [Pg.82]    [Pg.270]    [Pg.366]    [Pg.137]    [Pg.353]    [Pg.369]    [Pg.418]    [Pg.769]    [Pg.263]    [Pg.273]    [Pg.760]    [Pg.298]    [Pg.769]    [Pg.288]    [Pg.301]    [Pg.153]    [Pg.4131]    [Pg.187]    [Pg.18]    [Pg.474]    [Pg.89]    [Pg.529]    [Pg.85]    [Pg.36]    [Pg.152]    [Pg.81]    [Pg.11]    [Pg.375]    [Pg.138]   
See also in sourсe #XX -- [ Pg.81 , Pg.107 ]




SEARCH



Perfluorosulfonates

Perfluorosulfonic acid based

Perfluorosulfonic acid polymer

Polymer acid

© 2024 chempedia.info