Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubility pantothenic acid

The remaining molecules, vitamin C, pantothenic acid, and pyridoxamine, have comparatively large numbers of O—H and N—H groups. These groups allow each of these vitamin molecules to form many hydrogen bonds, so they are all water-soluble (all the B vitamins are soluble in water). [Pg.840]

The water-soluble vitamins generally function as cofactors for metabolism enzymes such as those involved in the production of energy from carbohydrates and fats. Their members consist of vitamin C and vitamin B complex which include thiamine, riboflavin (vitamin B2), nicotinic acid, pyridoxine, pantothenic acid, folic acid, cobalamin (vitamin B12), inositol, and biotin. A number of recent publications have demonstrated that vitamin carriers can transport various types of water-soluble vitamins, but the carrier-mediated systems seem negligible for the membrane transport of fat-soluble vitamins such as vitamin A, D, E, and K. [Pg.263]

In an investigation of the water-soluble vitamins in human skin,71 it was found that 15 individuals showed relatively small ranges (less than 2-fold) for vitamin B12, folic acid, and biotin about 2-fold ranges in the cases of riboflavin, niacin, and thiamine about a 4-fold range in the case of ascorbic acid, and more than a 5-fold range in the case of pantothenic acid. In another study72 it was found that the total choline content of normal skin varied in four individuals over approximately a 10-fold range 127 to 1200 ig. per gm. The variation in the free choline in the same individuals was relatively small. [Pg.94]

Finally, we come to the last of the vitamins that appear on the contents list of my multivitamin pill—pantothenic acid. This water-soluble vitamin serves a single purpose in physiology and biochemistry it is a precursor to a far more complex molecule known as coenzyme A or, simply, CoASH. [Pg.204]

The B-group is a heterogeneous collection of water-soluble vitamins, most of which function as co-enzymes or are precursors of co-enzymes. The B-group vitamins are thiamin, riboflavin, niacin, biotin, pantothenic acid, pyridoxine (and related substances, vitamin B6), folate and cobalamin (and its derivatives, vitamin B12). [Pg.194]

Vitamins are chemically unrelated organic compounds that cannot be synthesized by humans and, therefore, must must be supplied by the diet. Nine vitamins (folic acid, cobalamin, ascorbic acid, pyridoxine, thiamine, niacin, riboflavin, biotin, and pantothenic acid) are classified as water-soluble, whereas four vitamins (vitamins A, D, K, and E) are termed fat-soluble (Figure 28.1). Vitamins are required to perform specific cellular functions, for example, many of the water-soluble vitamins are precursors of coenzymes for the enzymes of intermediary metabolism. In contrast to the water-soluble vitamins, only one fat soluble vitamin (vitamin K) has a coenzyme function. These vitamins are released, absorbed, and transported with the fat of the diet. They are not readily excreted in the urine, and significant quantities are stored in Die liver and adipose tissue. In fact, consumption of vitamins A and D in exoess of the recommended dietary allowances can lead to accumulation of toxic quantities of these compounds. [Pg.371]

In general, vitamins appear to be at least as stable during UHT processing as during conventional pasteurization (Mehta 1980). Levels of the fat-soluble vitamins A, D, and E, as well as those of the water-soluble vitamins, riboflavin, nicotinic acid, pantothenic acid, and biotin in milk, are not decreased by UHT processing. Furthermore, no loss of... [Pg.388]

Pantothenic acid is relatively labile (185,186). In the dry form, it is hygroscopic and unstable in solution its stability is strongly pH dependent, being greatest at pH 4-5. It is subject to hydrolytic cleavage to pantoic acid and /3-alaninc in more acidic or alkaline solutions. Pantothenic acid is very soluble in water, alcohols, and dioxane, less soluble in diethyl ether and acetone, and insoluble in benzene and chloroform. [Pg.455]

Vitamin B5 (pantothenic acid) (Figure 2.28) is a very widely distributed water-soluble vitamin, though yeast, liver, and cereals provide rich sources. Even though animals must obtain the vitamin through the diet, pantothenic acid deficiency is rare, since most foods provide... [Pg.31]

The fat-soluble vitamins are A, D, E, and K. The water-soluble vitamins are thiamine (vitamin Bj), riboflavin, nicotinic acid (niacin) and nicotinamide, pyridoxine (vitamin B6), pantothenic acid, biotin, para-aminobenzoic acid, choline, inositol, and other lipotropic agents, ascorbic acid (vitamin C), the riboflavonoids, folate, and vitamin B12 (see Figure 66.1 and Figure 66.2, and Table 66.1). [Pg.611]

The CP content of cottonseed meal may vary from 360 to 410g/kg, depending on the contents of hulls and residual oil. AA content and digestibility of cottonseed meal are lower than in soybean meal. Although fairly high in protein, cottonseed meal is low in lysine and tryptophan. The fibre content is higher in cottonseed meal than in soybean meal, and its ME value is inversely related to the fibre content. Cottonseed meal is a poorer source of minerals than soybean meal. The content of carotene is low in cottonseed meal, but this meal compares favourably with soybean meal in water-soluble vitamin content, except biotin, pantothenic acid and pyridoxine. [Pg.103]

It should be noted that deficiency states for some vitamins (e.g., pantothenic acid) are practically unknown in human beings. In such cases, deficiency states may be simulated by feeding the subject an appropriate vitamin antagonist. In another series of situations, vitamin deficiencies can be brought about by interfering with their absorption intentionally or may be the result of a disease process. Thus, fat-soluble vitamin deficiency may develop in cases of fat malabsorption syndromes (steatorrhea) sprue, pancreatic insufficiency, and bile duct obstruction. [Pg.126]

Calcium Pantothenate occurs as a slightly hygroscopic, white powder. It is the calcium salt of the dextrorotatory isomer of pantothenic acid. It is stable in air. One gram dissolves in about 3 mL of water. It is soluble in glycerin, but is practically insoluble in alcohol, in chloroform, and in ether. [Pg.72]

DL-Panthenol occurs as a white to creamy white, crystalline powder. It is a racemic mixture of the dextrorotatory (active) and levorotatory (inactive) isomers of panthenol, the alcohol analogue of pantothenic acid. It is freely soluble in water, in alcohol, and in propylene glycol. It is soluble in chloroform and in ether, and is slightly soluble in glycerin. Its solutions are neutral or alkaline to litmus. [Pg.317]

Water-soluble vitamins. Water-soluble vitamins include vitamin C, and those of the B-complex group biotin, folate, niacin, pantothenic acid, riboflavin, thiamine, vitamin Bg and vitamin B12. They function mainly as coenzymes and prosthetic groups. [Pg.26]

The energy content of sunflower meal compares favorably with that of other oilseed meals and increases as the residual oil content increases and as the fiber content decreases. Sunflower meal also compares favorably with other oilseed meals as a source of calcium and phosphorus (36) and is an excellent source of water-soluble B-complex vitamins, namely nicotinic acid, thiamine, pantothenic acid, riboflavin, and biotin. [Pg.2367]

Deficiency of water-soluble vitamins is far less precarious than a deficit of fat-soluble vitamins. While the first condition is generally rare, it can nevertheless often be observed in severe alcoholism. In liver cirrhosis, it was possible to detect a reduced amount of vitamins B2, Bg, Bi2, C and niacin or pantothenic acid in the liver as well as hypofunction of vitamins Bi, B2, Bg, C and folic acid. Hypovitaminosis may develop due to the reduced formation of specific transport proteins or the decreased acti-... [Pg.730]

Vitamins are divided into two major categories. They are fat-soluble (A, D, E and K) and water-soluble vitamins (B-complex and vitamin C). B complex vitamins include thiamine (Bi), riboflavin (B2), pantothenic acid (B3), niacin (B5), pyridoxine (Be), biotin (By), folic acid (B9), and cobalamin (Biy). Inositol, cholic and para-aminobenzoic acid are vitamin-like substances sometimes classified as part of the B complex, but no convincing evidence has been shown so far to be included as vitamins. All the fat-soluble vitamins and some B vitamins exist in multiple forms. The active forms of vitamin A are retinol, retinal and retinoic acid and vitamin D is available as ergocalciferol (D2) and cholecalciferol (D3). The vitamin E family includes four tocopherols and four tocotrienols but a-tocopherol being the most abundant and active form. The multiple forms of vitamins are interconvertible and some are interchangeable. [Pg.225]

Some itamirLS are water soluble, while others are fat soluble. This classification is valuable as it indicates whether the vitamin is likely to be absorbed similarly to lipids or like other water-soluble nutrients. The fat-soluble vitamins are A, D, E, and K. The water-soluble vitamins arc ascorbic acid, biotin, folate, niacin, pantothenic acid, riboflavin, thiamin, vitamin B i, and vitamin B 2. The classification is also valuable, as it helps chemists decide on the best way to extract and analyze a particular vitamin in foods and biological tissues. Aside from having some bearing on the path ways of absorption and distribution throughout the body, the question of whether a particular vitamin is fat soluble or water soluble has little or no relevance to its function in the body. [Pg.493]

Pantothenic acid is a water-soluble vitamin. The vitamin has two functions, in the biosynthesis of coenzyme A and in the synthesis of the cofactor of fatty acid... [Pg.613]

Although the water-soluble vitamins are structurally diverse, they are put in a general class to distinguish them from the lipid-soluble vitamins. This cla.ss includes the B-complex vitamins and ascorbic acid (vitamin C). The term B-complex vitamins usually refers to thiamine, riboflavin, pyridoxine. nicotinic acid, pantothenic acid, hiotin. cyanocobalamin. and folic acid. Dietary deficiencies of any of the B vitamins commonly are complicated by deftciencies of another mem-ber(s) of the group,. so treatment with B-complex preparations is usually indicated. [Pg.885]

Caldum Pantothenate, USP. Calcium pantothenate, calcium u-pantolhenate, is a slightly hygroscopic, white, odorless, bitter powder that is stable in air. It is insoluble in alcohol and soluble 1 3 in water aqueous solutions have a pH of about 9 and lalo = -1-25 to -1-27.5 . Autoclaving calcium pantothenate at I20°C for 20 minutes may cau.se 10 to 30% decomposition. Some of the phosphates of pantothenic acid that occur naturally in coenzymes are quite stable to both acid and alkali, even on hcating. - ... [Pg.888]

Dexpanthenol, USP. Dcxpanthenul occurs as a slightly hygroscopic, viscous oil freely soluble in water and alcohul. It is the dextrorotatory alcohul derivative of pantothenic acid and is converted readily in vivo to the acid form. [Pg.888]

Ball GFM. Pantothenic acid. Water-soluble vitamin assays in human nutrition. New York Chapman and Hall, 1994. [Pg.1144]

Calcium pantothenate is commonly used in dry dosage forms. It is moderately hygroscopic, with a solubility of 1 g/2.8 mL, and is unstable for autoclaving. Neither the parent pantothenic acid nor the sodium salt is commonly used in dosage forms. [Pg.401]

The answer is e. (Murray, pp 627-661. Sciiver, pp 3897-3964. Sack, pp 121-138. Wilson, pp 287-320.) Ascorbic acid (vitamin C) is found in fresh fruits and vegetables. Deficiency of ascorbic acid produces scurvy, the sailor s disease. Ascorbic acid is necessary for the hydroxylation of proline to hydroxyproline in collagen, a process required in the formation and maintenance of connective tissue. The failure of mesenchymal cells to form collagen causes the skeletal, dental, and connective tissue deterioration seen in scurvy. Thiamine, niacin, cobalamin, and pantothenic acid can all be obtained from fish or meat products. The nomenclature of vitamins began by classifying fat-soluble vitamins as A (followed by subsequent letters of the alphabet such as D, E, and K) and water-soluble vitamins as B. Components of the B vitamin fraction were then given subscripts, e.g., thiamine (Bi), riboflavin (B2), niacin [nicotinic acid (B3)], panthothenic acid (B5), pyridoxine (Bg), and cobalamin (B ). The water-soluble vitamins C, biotin, and folic acid do not follow the B nomenclature. [Pg.256]

Vitamin requirements for ESKD patients receiving dialysis differ from those of a healthy person because of dietary modifications, kidney dysfunction, and dialysis therapy. The plasma concentrations of vitamins A and E are elevated in ESKD, while those of the water-soluble vitamins (81,82,8g, 812, niacin, pantothenic acid, folic acid, biotin, and vitamin C) tend to be low in this population, in large part due to the fact that many are dialyzable. The goal for vitamin supplementation in this population should be to prevent subclinical and frank deficiency and to avoid pathology from overdosage. Special vitamin supplements have been formulated for the dialysis population, which primarily include 8 vitamins with C and folic acid. [Pg.846]

Pantothenic acid (4), a water-soluble vitamin, is currently manufactured from (R)-pantolactone ((R)-l) and P-alanine (Scheme 1) Commercial syntheses for... [Pg.1348]

The structure and function of pantothenic acid are discussed in Appendix F, Water-Soluble Vitamins. [Pg.662]


See other pages where Solubility pantothenic acid is mentioned: [Pg.5]    [Pg.56]    [Pg.932]    [Pg.61]    [Pg.41]    [Pg.296]    [Pg.421]    [Pg.249]    [Pg.146]    [Pg.126]    [Pg.133]    [Pg.932]    [Pg.41]    [Pg.5]    [Pg.56]    [Pg.897]    [Pg.276]    [Pg.131]   
See also in sourсe #XX -- [ Pg.129 ]




SEARCH



Pantothenate

Pantothenate pantothenic acid

Pantothenic acid

Water-soluble vitamins pantothenic acid

© 2024 chempedia.info