Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation of elastomers

Clough, R. L. (1999) Oxidation of elastomers, in Mallinson, L. (Ed.) Lifetime Prediction of Materials, Oxford Kluwer. [Pg.314]

Oxidation of elastomers is accelerated by a number of factors including heat, heavy metal contamination, sulfur, light, moisture, swelling in oil and solvents, dynamic fatigue, oxygen, and ozone. Three variables in the compound formulation can be optimized to resist degradation polymer type, cure system,... [Pg.444]

Heavy transition metal ions such as iron, manganese, and copper catalyze oxidation of elastomers. Compounds of manganese or copper such as oleates and stearates are readily soluble in rubber, enabling rapid oxidation of the polymer. /7flra-Phenylenediamine antidegradants are used to hinder the activity of such metal ions. [Pg.445]

Gonzalez, V., Thermo-Oxidation of Elastomers by Differential Scanning... [Pg.628]

Thermal Oxidative Stability. ABS undergoes autoxidation and the kinetic features of the oxygen consumption reaction are consistent with an autocatalytic free-radical chain mechanism. Comparisons of the rate of oxidation of ABS with that of polybutadiene and styrene—acrylonitrile copolymer indicate that the polybutadiene component is significantly more sensitive to oxidation than the thermoplastic component (31—33). Oxidation of polybutadiene under these conditions results in embrittlement of the mbber because of cross-linking such embrittlement of the elastomer in ABS results in the loss of impact resistance. Studies have also indicated that oxidation causes detachment of the grafted styrene—acrylonitrile copolymer from the elastomer which contributes to impact deterioration (34). [Pg.203]

Elastomers. Elastomers are polymers or copolymers of hydrocarbons (see Elastomers, synthetic Rubber, natural). Natural mbber is essentially polyisoprene, whereas the most common synthetic mbber is a styrene—butadiene copolymer. Moreover, nearly all synthetic mbber is reinforced with carbon black, itself produced by partial oxidation of heavy hydrocarbons. Table 10 gives U.S. elastomer production for 1991. The two most important elastomers, styrene—butadiene mbber (qv) and polybutadiene mbber, are used primarily in automobile tires. [Pg.369]

Oxidation Catalysis. The multiple oxidation states available in molybdenum oxide species make these exceUent catalysts in oxidation reactions. The oxidation of methanol (qv) to formaldehyde (qv) is generally carried out commercially on mixed ferric molybdate—molybdenum trioxide catalysts. The oxidation of propylene (qv) to acrolein (77) and the ammoxidation of propylene to acrylonitrile (qv) (78) are each carried out over bismuth—molybdenum oxide catalyst systems. The latter (Sohio) process produces in excess of 3.6 x 10 t/yr of acrylonitrile, which finds use in the production of fibers (qv), elastomers (qv), and water-soluble polymers. [Pg.477]

Ammonia is used in the fibers and plastic industry as the source of nitrogen for the production of caprolactam, the monomer for nylon 6. Oxidation of propylene with ammonia gives acrylonitrile (qv), used for the manufacture of acryHc fibers, resins, and elastomers. Hexamethylenetetramine (HMTA), produced from ammonia and formaldehyde, is used in the manufacture of phenoHc thermosetting resins (see Phenolic resins). Toluene 2,4-cHisocyanate (TDI), employed in the production of polyurethane foam, indirectly consumes ammonia because nitric acid is a raw material in the TDI manufacturing process (see Amines Isocyanates). Urea, which is produced from ammonia, is used in the manufacture of urea—formaldehyde synthetic resins (see Amino resins). Melamine is produced by polymerization of dicyanodiamine and high pressure, high temperature pyrolysis of urea, both in the presence of ammonia (see Cyanamides). [Pg.358]

Stabilization of Elastomers. Polyunsaturated elastomers are sensitive to oxidation. Stabili2ers are added to the elastomers prior to vulcani2ation to protect the mbber during drying and storage. Nonstaining antioxidants such as butylated hydroxytoluene (1),... [Pg.232]

Free radicals are initially generated whenever polymer chains are broken and carbon radicals are formed. These effects occur during manufacture and in service life. Many elastomers are observed to oxidize at relatively low temperature (about 60°C), where carbon-hydrogen and carbon-carbon bond cleavages are highly unlikely. It has been demonstrated [52] that traces of peroxides impurities in the rubber cause low-temperature oxidation of rubber. These initiating peroxides are present in even the most carefully prepared raw rubber polymer [53]. [Pg.641]

Physical properties of carbon black-filled EPR and EPDM elastomers have been found to be comparable with the suUur-cured analogues [372]. Aromatic oils increase the optimum dose requirement for these compounds due to the reaction of the transient intermediates formed during radiolysis of the polymer with the oil as well as energy transfer which is particularly effective when the oil contains aromatic groups. The performance and oxidative stability of unfilled EPDM as well as its blend with PE [373], and the thermal stabdity and radiation-initiated oxidation of EPR compounds are reported by a number of workers [374,375]. [Pg.882]

The characteristic property of elastomers is their rubber-elastic behavior. Their softening temperature lies below room temperature. In the unvulcanized state, i.e. without crosslinking of the molecular chains, elastomers are plastic and thermo-formable, but in the vulcanized state—within a certain temperature range — they deform elastically. Vulcanization converts natural rubber into the elastic state. A large number of synthetic rubber types and elastomers are known and available on the market. They have a number of specially improved properties over crude rubber, some of them having substantially improved elasticity, heat, low-temperature, weathering and oxidation resistance, wear resistance, resistance to different chemicals, oils etc. [Pg.174]

This most widely used black pigment is also in the top 50 chemicals. About 4.0 billion lb of carbon black were made in 2001. Commercial value was 1.4 billion at 35C/lb, but 93% of this is used for reinforcement of elastomers. Only 7% is used in paints and inks. Carbon black is made by the partial oxidation of residual hydrocarbons from crude oil. See Chapter 6, Section 7.2. The hydrocarbons are usually the heavy by-product residues from petroleum cracking, ideally high in aromatic content and low in sulfur and ash, bp around 260°C. [Pg.349]

Phenan thro line (182) can be used instead of thiocyanate to form a complex with Fe(III) ions resulting from the oxidation of Fe(II), and the measurement is made at 500 to 510 nm. The use of 182 has the advantage of stability in the presence of air and also of allowing the use of hydrocarbon solvents for increased solubility of certain analytes. The method was applied for determination of hydroperoxides in natural rubber and synthetic elastomers, in the range of 10 to 20 ppm active oxygen. The sensitivity can be improved to less than 1 ppm, depending on the color of the sample solution. ... [Pg.676]

Mixing of the crystalline ingredients of oxidant, fuel elastomer binder (butadiene-2-methyl-5 vinyl-pyridine copolymer plasticized with the formal of diethylene glycol monobutyl ether) 26% by vol is done in a sigma blade mixer. The completed mix is blocked in a hydraulic press to form a chge suitable for extrusion. The extruded strand is cut into grain blanks which are cured at... [Pg.374]

Improvement of the mechanical properties of elastomers is usually reached by their reinforcement with fillers. Traditionally, carbon black, silica, metal oxides, some salts and rigid polymers are used. The elastic modulus, tensile strength, and swelling resistence are well increased by such reinforcement. A new approach is based on block copolymerization yielding thermoelastoplastics, i.e. block copolymers with soft (rubbery) and hard (plastic) blocks. The mutual feature of filled rubbers and the thermoelastoplastics is their heterogeneous structure u0). [Pg.68]

It appears from the evolution of the adhesion index that a distinction has to be made between the interactions carbon blacks are able to have with unsaturated or with saturated (or near-to-saturated) elastomers. Thus, the adhesion index of butyl rubber is enhanced upon oxidation of the black, while the reverse is observed with polybutadiene 38). The improvement of the reinforcing ability of carbon black upon oxidation, in the former case, has been interpreted by Gessler 401 as due to chemical interactions of butyl rubber with active functional groups on the solid surface. Gessler, relating the reinforcing characteristics of the oxidized carbon black for butyl rubber to the presence of carboxyl groups on the surface of the filler, postulated a cationic... [Pg.120]

Practical interest in high-molecular-weight poly (propylene oxide) centers in its potential use as an elastomer (19). Copolymerization of propylene oxide with allyl glycidyl ether gives a copolymer with double bonds suitable for sulfur vulcanization. Table IV shows the properties of elastomers made with a copolymer prepared with a zinc hexacyano-ferrate-acetone-zinc chloride complex. Also shown are the properties of elastomers made from partially crystalline copolymers prepared with zinc diethyl-water catalyst. Of particular interest are the lower room-... [Pg.232]

Block copolymers may also be made by condensation polymerization. Elastomer fibers are produced in a three-step operation. A primary block of a polyether or polyester of a molecular weight of 1000-3000 is prepared, capped with an aromatic diisocyanate, and then expanded with a diamine or dihydroxy compound to a multiblock copolymer of a molecular weight of 20,000. The oxidative coupling of 2,6-disubstituted phenols to PPO is also a condensation polymerization. G. D. Cooper and coworkers report the manufacture of a block copolymer of 2,6-dimethyl-phenol with 2,6-diphenylphenol. In the first step, a homopolymer of diphenylphenol is preformed by copper-amine catalyst oxidation. In the second step, oxidation of dimethylphenol in the presence of the first polymer yields the block copolymer. [Pg.12]


See other pages where Oxidation of elastomers is mentioned: [Pg.594]    [Pg.594]    [Pg.180]    [Pg.235]    [Pg.239]    [Pg.256]    [Pg.246]    [Pg.522]    [Pg.13]    [Pg.510]    [Pg.250]    [Pg.478]    [Pg.1057]    [Pg.134]    [Pg.518]    [Pg.622]    [Pg.684]    [Pg.618]    [Pg.246]    [Pg.124]    [Pg.450]    [Pg.622]    [Pg.676]    [Pg.684]    [Pg.37]    [Pg.136]    [Pg.253]    [Pg.13]    [Pg.99]   
See also in sourсe #XX -- [ Pg.427 ]




SEARCH



Elastomers oxidation

Thermal-Oxidative Resistance of Elastomers

© 2024 chempedia.info