Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elastomer oxidation

The unsaturated nature of an elastomer accounts for its unique viscoelastic properties. However, the presence of carbon-carbon double bonds renders elastomers susceptible to attack by oxygen, ozone, and thermal degradation. A comprehensive review of elastomer oxidation and the role of antioxidants and antiozonants is available (Hong, 2004). [Pg.444]

Burlett DJ. Studies of elastomer oxidation via thermal analysis. In 153rd ACS Rubber Division Meeting, Indianapolis, 5-8 May, 1998. Paper 11. [Pg.254]

Elastomeric shield materials (ESM) have been developed as low density flexible ablators for low shear appHcations (49). General Electric s RTV 560 is a foamed silicone elastomer loaded with silicon dioxide [7631-86-9] and iron oxide [1317-61 -9] particles, which decomposes to a similar foam of Si02, SiC, and EeSiO. Silicone resins are relatively resistant to thermal decomposition and the silicon dioxide forms a viscous Hquid when molten (50) (see... [Pg.6]

Thermal Oxidative Stability. ABS undergoes autoxidation and the kinetic features of the oxygen consumption reaction are consistent with an autocatalytic free-radical chain mechanism. Comparisons of the rate of oxidation of ABS with that of polybutadiene and styrene—acrylonitrile copolymer indicate that the polybutadiene component is significantly more sensitive to oxidation than the thermoplastic component (31—33). Oxidation of polybutadiene under these conditions results in embrittlement of the mbber because of cross-linking such embrittlement of the elastomer in ABS results in the loss of impact resistance. Studies have also indicated that oxidation causes detachment of the grafted styrene—acrylonitrile copolymer from the elastomer which contributes to impact deterioration (34). [Pg.203]

Polymer-based rocket propellants are generally referred to as composite propellants, and often identified by the elastomer used, eg, urethane propellants or carboxy- (CTPB) or hydroxy- (HTPB) terrninated polybutadiene propellants. The cross-linked polymers act as a viscoelastic matrix to provide mechanical strength, and as a fuel to react with the oxidizers present. Ammonium perchlorate and ammonium nitrate are the most common oxidizers used nitramines such as HMX or RDX may be added to react with the fuels and increase the impulse produced. Many other substances may be added including metallic fuels, plasticizers, stabilizers, catalysts, ballistic modifiers, and bonding agents. Typical components are Hsted in Table 1. [Pg.32]

Hydrocarbon resins are used extensively as modifiers in adhesives, sealants, printing inks, paints and varnishes, plastics, road marking, flooring, and oil field appHcations. In most cases, they ate compounded with elastomers, plastics, waxes, or oils. Selection of a resin for a particular appHcation is dependent on composition, molecular weight, color, and oxidative and thermal stabiHty, as weU as cost. A listing of all hydrocarbon resin suppHers and the types of resins that they produce is impractical. A representative listing of commercially available hydrocarbon resins and their suppHers is included in Table 6. [Pg.357]

Elastomers. Elastomers are polymers or copolymers of hydrocarbons (see Elastomers, synthetic Rubber, natural). Natural mbber is essentially polyisoprene, whereas the most common synthetic mbber is a styrene—butadiene copolymer. Moreover, nearly all synthetic mbber is reinforced with carbon black, itself produced by partial oxidation of heavy hydrocarbons. Table 10 gives U.S. elastomer production for 1991. The two most important elastomers, styrene—butadiene mbber (qv) and polybutadiene mbber, are used primarily in automobile tires. [Pg.369]

Oxidation Catalysis. The multiple oxidation states available in molybdenum oxide species make these exceUent catalysts in oxidation reactions. The oxidation of methanol (qv) to formaldehyde (qv) is generally carried out commercially on mixed ferric molybdate—molybdenum trioxide catalysts. The oxidation of propylene (qv) to acrolein (77) and the ammoxidation of propylene to acrylonitrile (qv) (78) are each carried out over bismuth—molybdenum oxide catalyst systems. The latter (Sohio) process produces in excess of 3.6 x 10 t/yr of acrylonitrile, which finds use in the production of fibers (qv), elastomers (qv), and water-soluble polymers. [Pg.477]

Flame and Smoke Retardants. Molybdenum compounds are used extensively as flame retardants (qv) (93,94) in the formulation of halogenated polymers such as PVC, polyolefins, and other plastics elastomers and fabrics. An incentive for the use of molybdenum oxide and other molybdenum smoke and flame retardants is the elimination of the use of arsenic trioxide. Although hydrated inorganics are often used as flame retardants, and thought to work by releasing water of crystallization, anhydrous molybdenum oxides are effective. Presumably the molybdenum oxides rapidly form... [Pg.477]

Nickel dialkyldithiocarbamates stabili2e vulcani2ates of epichlorhydrinethylene oxide against heat aging (178). Nickel dibutyldithiocarbamate [56377-13-0] is used as an oxidation inhibitor in synthetic elastomers. Nickel chelates of substituted acetylacetonates are flame retardants for epoxy resins (179). Nickel dicycloalkyldithiophosphinates have been proposed as flame-retardant additives for polystyrene (180—182) (see Flame retardants Heat stabilizers). [Pg.15]

Waterborne contact adhesives contain an elastomer in latex form, usually an acryflc or neoprene-based latex, and a heat-reactive, cross-linkable phenohc resin in the form of an aqueous dispersion. The phenoHc resin improves metal adhesion, green strength, and peel strength at elevated temperature. A typical formulation contains three parts latex and one part phenohc dispersion (dry weight bases). Although metal oxides may be added, reaction of the oxide with the phenohc resin does not occur readily. [Pg.304]

A. T. Chen, and co-workers, "Comparison of the Dynamic Properties of Polyurethane Elastomers Based on Low Unsaturation Polyoxypropylene Glycols and Poly(tetramethylene oxide) Glycols," Polyurethanes World Congress 1993, Vancouver, B.C., Canada, Oct. 10—13,1993. [Pg.356]

Ammonia is used in the fibers and plastic industry as the source of nitrogen for the production of caprolactam, the monomer for nylon 6. Oxidation of propylene with ammonia gives acrylonitrile (qv), used for the manufacture of acryHc fibers, resins, and elastomers. Hexamethylenetetramine (HMTA), produced from ammonia and formaldehyde, is used in the manufacture of phenoHc thermosetting resins (see Phenolic resins). Toluene 2,4-cHisocyanate (TDI), employed in the production of polyurethane foam, indirectly consumes ammonia because nitric acid is a raw material in the TDI manufacturing process (see Amines Isocyanates). Urea, which is produced from ammonia, is used in the manufacture of urea—formaldehyde synthetic resins (see Amino resins). Melamine is produced by polymerization of dicyanodiamine and high pressure, high temperature pyrolysis of urea, both in the presence of ammonia (see Cyanamides). [Pg.358]

Epichlorohydrin. Commercial polyester elastomers include both the homopolymer and the copolymer of epichl orohydrin with ethylene oxide. The very polar chloromethyl groups create basic resistance to oil for these polymers, and they have been extensively used in fuel lines however, the desire for lower fuel permeation is causing a search to be made for other polymers (10) (see Elastomers, synthetic-polyethers). [Pg.233]

Meta.1 Oxides. Halogen-containing elastomers such as polychloropreae and chlorosulfonated polyethylene are cross-linked by their reaction with metal oxides, typically ziac oxide. The metal oxide reacts with halogen groups ia the polymer to produce an active iatermediate which then reacts further to produce carbon—carbon cross-links. Ziac chloride is Hberated as a by-product and it serves as an autocatalyst for this reaction. Magnesium oxide is typically used with ZnCl to control the cure rate and minimize premature cross-linking (scorch). [Pg.236]

Amine Cross-Linking. Two commercially important, high performance elastomers which are not normally sulfur-cured are the fluoroelastomers (FKM) and the polyacrylates (ACM). Polyacrylates typically contain a small percent of a reactive monomer designed to react with amine curatives such as hexamethylene-diamine carbamate (Diak 1). Because the type and level of reactive monomer varies with ACM type, it is important to match the curative type to the particular ACM ia questioa. Sulfur and sulfur-beating materials can be used as cure retarders they also serve as age resistors (22). Fluoroelastomer cure systems typically utilize amines as the primary cross-linking agent and metal oxides as acid acceptors. [Pg.236]

In addition, polyester polyols are made by the reaction of caprolactone with diols. Poly(caprolactone diols) are used in the manufacture of thermoplastic polyurethane elastomers with improved hydrolytic stabiHty (22). The hydrolytic stabiHty of the poly(caprolactone diol)-derived TPUs is comparable to TPUs based on the more expensive long-chain diol adipates (23). Polyether/polyester polyol hybrids are synthesized from low molecular weight polyester diols, which are extended with propylene oxide. [Pg.347]


See other pages where Elastomer oxidation is mentioned: [Pg.246]    [Pg.246]    [Pg.7308]    [Pg.31]    [Pg.246]    [Pg.246]    [Pg.7308]    [Pg.31]    [Pg.180]    [Pg.203]    [Pg.204]    [Pg.233]    [Pg.235]    [Pg.33]    [Pg.369]    [Pg.369]    [Pg.468]    [Pg.284]    [Pg.327]    [Pg.459]    [Pg.428]    [Pg.92]    [Pg.151]    [Pg.304]    [Pg.304]    [Pg.137]    [Pg.239]    [Pg.256]    [Pg.236]    [Pg.236]    [Pg.246]    [Pg.272]    [Pg.58]    [Pg.392]    [Pg.345]    [Pg.421]   
See also in sourсe #XX -- [ Pg.444 ]

See also in sourсe #XX -- [ Pg.427 ]




SEARCH



Elastomers epichlorohydrin/ethylene oxide

Elastomers oxidative conditions

Elastomers polypropylene oxide)

Oxidation of elastomers

Poly(alkylene oxide) flexible segment-based polyester elastomers

Thermal-Oxidative Resistance of Elastomers

© 2024 chempedia.info