Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic substitution catalytic reactions

Among several propargylic derivatives, the propargylic carbonates 3 were found to be the most reactive and they have been used most extensively because of their high reactivity[2,2a]. The allenylpalladium methoxide 4, formed as an intermediate in catalytic reactions of the methyl propargylic carbonate 3, undergoes two types of transformations. One is substitution of cr-bonded Pd. which proceeds by either insertion or transmetallation. The insertion of an alkene, for example, into the Pd—C cr-bond and elimination of/i-hydrogen affords the allenyl compound 5 (1.2,4-triene). Alkene and CO insertions are typical. The substitution of Pd methoxide with hard carbon nucleophiles or terminal alkynes in the presence of Cul takes place via transmetallation to yield the allenyl compound 6. By these reactions, various allenyl derivatives can be prepared. [Pg.453]

Piperazinothiazoies (2) were obtained by such a replacement reaction, Cu powder being used as catalyst (25. 26). 2-Piperidinothiazoles are obtained in a similar way (Scheme 2) (27). This catalytic reaction has been postulated in the case of benzene derivatives as a nucleophilic substitution on the copper-complexed halide in which the halogen possesses a positive character by coordination (29). For heterocyclic compounds the coordination probably occurs on the ring nitrogen. [Pg.12]

It was noted early by Smid and his coworkers that open-chained polyethylene glycol type compounds bind alkali metals much as the crowns do, but with considerably lower binding constants. This suggested that such materials could be substituted for crown ethers in phase transfer catalytic reactions where a larger amount of the more economical material could effect the transformation just as effectively as more expensive cyclic ethers. Knbchel and coworkers demonstrated the application of open-chained crown ether equivalents in 1975 . Recently, a number of applications have been published in which simple polyethylene glycols are substituted for crowns . These include nucleophilic substitution reactions, as well as solubilization of arenediazonium cations . Glymes have also been bound into polymer backbones for use as catalysts " " . [Pg.312]

The symmetric series provides functional cyclohexadienes, whereas the non-symmetric one serves to build deuterated and/or functional arenes and tentacled compounds. In both series, several oxidation states can be used as precursors and provide different types of activation. The complexes bearing a number of valence, electrons over 18 react primarily by electron-transfer (ET). The ability of the sandwich structure to stabilize several oxidation states [21] also allows us to use them as ET reagents in stoichiometric and catalytic ET processes [18, 21, 22]. The last well-developed type of reactions is the nucleophilic substitution of one or two chlorine atoms in the FeCp+ complexes of mono- and o-dichlorobenzene. This chemistry is at least as rich as with the Cr(CO)3 activating group and more facile since FeCp+ activator is stronger than Cr(CO) 3. [Pg.50]

Other salts, especially fluoride salts, (e.g., KF) can be used to perform nucleophilic substitution. As is well known, halides, and particularly the fluoride anions, are rather powerful Lewis bases and can exert a catalytic effect on aromatic nucleophilic substitutions in dipolar aprotic solvents. Phenols can be alkylated in the presence of KF (or CsF) absorbed on Celite64,65 or Et4NF.66 Taking advantage of this reaction, halophenols and dihalides with bisphenols have been successfully polymerized in sulfolane at 220-280°C by using KF as the base. [Pg.338]

Almost no attention has been paid to diphosphine sulfides employed as chiral ligands for palladium-catalysed nucleophilic substitution reactions. In this context, enantiomerically pure diphosphine sulfides derived from 2,2 -biphosphole, which combined axial chirality and phosphorus chiralities, were synthesised, in 2008, by Gouygou et al. through a four-step synthetic sequence. Among various palladium catalytic systems derived from this type of ligands and evaluated for the test reaction, that depicted in Scheme 1.62... [Pg.49]

Nucleophilic Substitution of xi-Allyl Palladium Complexes. TT-Allyl palladium species are subject to a number of useful reactions that result in allylation of nucleophiles.114 The reaction can be applied to carbon-carbon bond formation using relatively stable carbanions, such as those derived from malonate esters and (3-sulfonyl esters.115 The TT-allyl complexes are usually generated in situ by reaction of an allylic acetate with a catalytic amount of fefrafcz s-(triphenylphosphine)palladium... [Pg.712]

The chloro group of 6 is now highly activated toward nucleophilic aromatic substitution, facilitating reaction with phenoxide. Subsequent catalytic reduction in the presence of LiOH produces amino acid 7. Next, treatment with butanol and sulfuric acid not only forms the butyl ester but monoalkylates the amino function. Saponification of the ester group leads to bumetanide (8), a diuretic agent possessing 40-fold greater activity in healthy adults than furosemide. ... [Pg.87]

Lamaty and coworkers described a straightforward combination of three Pd-cata-lyzed transformations first, an intermolecular nucleophilic substitution of an al-lylic bromide to form an aryl ether second, an intramolecular Heck-type transformation in which as the third reaction the intermediate palladium species is intercepted by a phenylboronic acid [124]. Thus, the reaction of a mixture of 2-iodophenol (6/1-253), methyl 2-bromomethylacrylate 6/1-254 and phenylboronic acid in the presence of catalytic amounts of Pd(OAc)2 led to 3,3-disubstituted 2,3-di-hydrobenzofuran 6/1-255 (Scheme 6/1.66). In addition to phenylboronic acid, several substituted boronic acids have also been used in this process. [Pg.401]

Molecular transport junctions differ from traditional chemical kinetics in that they are fundamentally electronic rather than nuclear - in chemical kinetics one talks about nucleophilic substitution reactions, isomerization processes, catalytic insertions, crystal forming, lattice changes - nearly always these are describing nuclear motion (although the electronic behavior underlies it). In general the areas of both electron transfer and electron transport focus directly on the charge motion arising from electrons, and are therefore intrinsically quantum mechanical. [Pg.12]

The reverse emulsion stabilized by sodium dodecylsulfate (SDS, R0S03 Na+) retards the autoxidation of dodecane [24] and ethylbenzene [21,26,27]. The basis for this influence lies in the catalytic decomposition of hydroperoxides via the heterolytic mechanism. The decay of hydroperoxides under the action of SDS reverse micelles produces olefins with a yield of 24% (T=413 K, 0.02mol L 1 SDS, dodecane, [ROOH]0 = 0.08 mol L 1) [27], The thermal decay gives olefins in negligible amounts. The decay of hydroperoxides apparently occurs in the ionic layer of a micelle. Probably, it proceeds via the reaction of nucleophilic substitution in the polar layer of a micelle. [Pg.440]

Additions to quinoline derivatives also continued to be reported last year. Chiral dihydroquinoline-2-nitriles 55 were prepared in up to 91% ee via a catalytic, asymmetric Reissert-type reaction promoted by a Lewis acid-Lewis base bifunctional catalyst. The dihydroquinoline-2-nitrile derivatives can be converted to tetrahydroquinoline-2-carboxylates without any loss of enantiomeric purity <00JA6327>. In addition the cyanomethyl group was introduced selectively at the C2-position of quinoline derivatives by reaction of trimethylsilylacetonitrile with quinolinium methiodides in the presence of CsF <00JOC907>. The reaction of quinolylmethyl and l-(quinolyl)ethylacetates with dimethylmalonate anion in the presence of Pd(0) was reported. Products of nucleophilic substitution and elimination and reduction products were obtained . Pyridoquinolines were prepared in one step from quinolines and 6-substituted quinolines under Friedel-Crafts conditions <00JCS(P1)2898>. [Pg.246]

Cyanohydrin diethyl phosphates 87, easily accessible from propargyl aldehydes or ketones of type 86, reacted with lithium dialkylcuprates or similar reagents via an Sn2 process to give cyanoallenes in moderate to good yields [135]. The transformations 80 —> 81 and 84 —> 85 are only formally also SN2 reactions. Thus, plausible catalytic cycles, which include different short-lived palladium intermediates, have been postulated to explain these nucleophilic substitution reactions [127, 134],... [Pg.370]

Probably the most important group of phase transfer reactions, and certainly the commonest, are those in which an anion is transferred from the aqueous phase into the organic solvent, where nucleophilic substitution occurs. These would once have been performed in a dipolar aprotic solvent such as DMF. A good example is the reaction between an alkyl halide (such as 1-chlorooctane), and aqueous sodium cyanide, shown in Scheme 5.5. Without PTC, the biphasic mixture can be stirred and heated together for 2 weeks and the only observable reaction will be hydrolysis of the cyanide group. Addition of a catalytic amount of a quaternary onium salt, or a crown ether, however, will lead to the quantitative conversion to the nitrile within 2 h. [Pg.112]

The application of phase-transfer catalysis to the Williamson synthesis of ethers has been exploited widely and is far superior to any classical method for the synthesis of aliphatic ethers. Probably the first example of the use of a quaternary ammonium salt to promote a nucleophilic substitution reaction is the formation of a benzyl ether using a stoichiometric amount of tetraethylammonium hydroxide [1]. Starks mentions the potential value of the quaternary ammonium catalyst for Williamson synthesis of ethers [2] and its versatility in the synthesis of methyl ethers and other alkyl ethers was soon established [3-5]. The procedure has considerable advantages over the classical Williamson synthesis both in reaction time and yields and is certainly more convenient than the use of diazomethane for the preparation of methyl ethers. Under liquidrliquid two-phase conditions, tertiary and secondary alcohols react less readily than do primary alcohols, and secondary alkyl halides tend to be ineffective. However, reactions which one might expect to be sterically inhibited are successful under phase-transfer catalytic conditions [e.g. 6]. Microwave irradiation and solidrliquid phase-transfer catalytic conditions reduce reaction times considerably [7]. [Pg.69]

In the unconventional synthesis of thioethers (Scheme 4.11), cyanide ion is displaced from thiocyanates by carbanions [52, 53], which have been generated under phase-transfer catalytic conditions (cf. 4.1.12). Thiocyanates are readily obtained by a standard catalysed nucleophilic substitution reaction [4, 54-58] (see Table 4.19). Aryl thiocyanates are obtained from activated aryl halides [4, 57] (see Chapter 2). [Pg.136]

Closely related to the ring-closing metathesis of enynes (Section 3.2.5.6), catalyzed by non-heteroatom-substituted carbene complexes, is the reaction of stoichiometric amounts of Fischer-type carbene complexes with enynes [266,308 -315] (for catalytic reactions, see [316]). In this reaction [2 + 2] cycloaddition of the carbene complex and the alkyne followed by [2 -t- 2] cycloreversion leads to the intermediate formation of a non-heteroatom-substituted, electrophilic carbene complex. This intermediate, unlike the corresponding nucleophilic carbene... [Pg.46]

In order to gain an insight into the mechanism on the basis of the slope of a Type A correlation requires a more complicated procedure. Consider the Hammett equation. The usual statement that electrophilic reactions exhibit negative slopes and nucleophilic ones positive slopes may not be true, especially when the values of the slopes are low. The correct interpretation has to take the reference process into account, for example, the dissociation equilibrium of substituted benzoic acids at 25°C in water for which the slope was taken, by definition, as unity (p = 1). The precise characterization of the process under study is therefore that it is more or less nucleophilic than the reference process. However, one also must consider the possible influence of temperature on the value of the slope when the catalytic reaction has been studied under elevated temperatures there is disagreement in the literature over the extent of this influence (cf. 20,39). The sign and value of the slope also depend on the solvent. The situation is similar or a little more complex with the Taft equation, in which the separation of the molecule into the substituent, link, and reaction center may be arbitrary and may strongly influence the values of the slopes obtained. This problem has been discussed by Criado (33) with respect to catalytic reactions. [Pg.161]

Hartwig and coworkers reported an approach to address this limitation involving tandem catalytic reactions. In this tandem process, sequential palladium-catalyzed isomerization of the branched isomer to the linear isomer, followed by iridium-catalyzed allylic substitution leads to the branched product with high enantiomeric excess [105]. More specifically, treatment of branched allylic esters with catalytic amounts of the combination of Pd(dba)2 and PPhs led to rapid isomerization of the branched allylic ester to the linear isomer, and the linear isomer underwent allylic substitution after addition of the iridium catalyst and nucleophile (Scheme 31). [Pg.203]


See other pages where Nucleophilic substitution catalytic reactions is mentioned: [Pg.197]    [Pg.673]    [Pg.37]    [Pg.254]    [Pg.550]    [Pg.877]    [Pg.89]    [Pg.338]    [Pg.524]    [Pg.863]    [Pg.133]    [Pg.480]    [Pg.585]    [Pg.151]    [Pg.166]    [Pg.196]    [Pg.72]    [Pg.152]    [Pg.657]    [Pg.36]    [Pg.370]    [Pg.115]    [Pg.238]    [Pg.110]    [Pg.445]    [Pg.10]    [Pg.39]    [Pg.79]    [Pg.286]    [Pg.31]    [Pg.198]   


SEARCH



Catalytic reactions substitution

Nucleophiles substitution reactions

Nucleophilic substitution reactions nucleophiles

Substitution reactions nucleophile

Substitution reactions nucleophilic

© 2024 chempedia.info