Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conversion quantitative

The relation is different when the initial reaction is followed by a virtually irreversible process. For example, reduction of 1,1-diphenyl-ethylene yields radical-anions which subsequently dimerize. The dimerization is virtually irreversible its rate constant was recently determined by the flash-photolysis technique82 and shown to vary from 1 x 108 for the Li+ salt to 30 x 108 M-1 s-1 for the Cs+ salt. The irreversibility of dimerization makes the conversion quantitative in spite of the relatively low electron affinity of the ethylene derivative. [Pg.39]

The internal standardisation technique actually increases the analytical error due to the measurement of two peak areas and should be reserved for samples undergoing pretreatment of pre- or post-column derivatisation to account for variable sample recovery or conversion. Quantitative analysis when applied to gradient elution systems affords reduced accuracy and precision due to the practical disadvantages of constancy of flow, reproducibility of gradient formation and solvent mixing-demixing. [Pg.353]

Qualitative approaches typically easier to apply but provide the least degree of insight. Conversely quantitative risk analysis (QRA) approaches are most demanding on resources and skill sets, but potentially deliver the most detailed understanding and provide the best basis if significant expenditure is involved. Semiquantitative approaches lie in between these extremes. The following sections will describe briefly some of the techniques that have been used in the context of corrosion risk assessment. [Pg.491]

Artificial Intelligence in Chemistry Chemical Abstracts Service Information System Graph Theory in Chemistry Nomenclature Automatic Generation and Conversion Quantitative Structure-Activity Relationships in Drug Design Reaction Databases Ring Perception Stereochemistry ... [Pg.182]

This method is to be recommended when only a small quantity of the acid is availa ble, since both the conversion of the acid into its silver salt (p. 445) and of the latter to the ester give almost quantitative yields. [Pg.96]

The success of this preparation depends upon the use of the apparatus (1) depicted in Fig.///, 57, 1, which permits of the automatic separation of the water produced in the reaction this will be termed a water-separator tube. Convenient dimensions for students preparations are indicated in the diagram. Determine the volume v of the tube up to the neck, i.e., between A and B, by adding water from a burette. The quantity of water which should be eliminated, assuming a quantitative conversion of the alcohol into the ether, may be computed from the equation ... [Pg.311]

Solutions of nitric acid in 100% sulphuric acid have a high electrical conductivity. If nitric acid is converted into a cation in these solutions, then the migration of nitric acid to the cathode should be observed in electrolysis. This has been demonstrated to occur in oleum and, less conclusively, in concentrated acid, observations consistent with the formation of the nitronium ion, or the mono- or di-protonated forms of nitric acid. Conductimetric measurements confirm the quantitative conversion of nitric acid into nitronium ion in sulphuric acid. ... [Pg.14]

The equilibrium constant K, the rate constants and and the dependences of all these quantities on temperature were determined. In the absence of added acetic acid, the conversion of nitric acid into acetyl nitrate is almost quantitative. Therefore, to obtain at equilibrium a concentration of free nitric acid sufficiently high for accurate analysis, media were studied which contained appreciable concentrations (c. 4 mol 1 ) of acetic acid. [Pg.80]

A mixture of 0.10 mol of the acetylenic alcohol, 0.12 mol of triethylamine and 200 ml of dichloromethane (note 1) was cooled to -50°C. Methanesulfinyl chloride (0.12 mol) (for its preparation from CH3SSCH3, (08300)30 and chlorine, see Ref. 73) was added in 10 min at -40 to -50°0. A white precipitate was formed immediately. After the addition the cooling bath was removed and the temperature was allowed to rise to -20°0, then the mixture was vigorously shaken or stirred with 100 ml of water. The lower layer was separated off and the aqueous layer was extracted twice with 10-ml portions of CH2CI2. The combined solutions were dried over magnesium sulfate and concentrated in a water-pump vacuum (note 2). The yields of the products, which are pure enough (usually 96%) for further conversions, are normally almost quantitative. [Pg.223]

The conversion of primary alcohols and aldehydes into carboxylic acids is generally possible with all strong oxidants. Silver(II) oxide in THF/water is particularly useful as a neutral oxidant (E.J. Corey, 1968 A). The direct conversion of primary alcohols into carboxylic esters is achieved with MnOj in the presence of hydrogen cyanide and alcohols (E.J. Corey, 1968 A,D). The remarkably smooth oxidation of ethers to esters by ruthenium tetroxide has been employed quite often (D.G. Lee, 1973). Dibutyl ether affords butyl butanoate, and tetra-hydrofuran yields butyrolactone almost quantitatively. More complex educts also give acceptable yields (M.E. Wolff, 1963). [Pg.134]

Hydroxythiazoles give 2-chIorothiazole derivatives almost quantitatively upon treatment with phosphorus oxychloride (221, 229, 428). This constitutes a convenient synthesis method for these compounds when the conversion of 2-aminothiazoles to 2-chlorothiazole derivatives fails. Esters of thiocarbamic acid or thiourethanes also react with a-halocarbonyl compounds to give the corresponding 2-alkoxythiazoles (50, 68, 209, 272). [Pg.259]

Acylated Corticoids. The corticoid side-chain of (30) was converted iato the cycHc ortho ester (96) by reaction with a lower alkyl ortho ester RC(OR )2 iu benzene solution ia the presence of i ra-toluenesulfonic acid (88). Acid hydrolysis of the product at room temperature led to the formation of the 17-monoesters (97) ia nearly quantitative yield. The 17-monoesters (97) underwent acyl migration to the 21-monoesters (98) on careful heating with. In this way, prednisolone 17a,21-methylorthovalerate was converted quantitatively iato prednisolone 17-valerate, which is a very active antiinflammatory agent (89). The iatermediate ortho esters also are active. Thus, 17a,21-(l -methoxy)-pentyhdenedioxy-l,4-pregnadiene-liP-ol-3,20-dione [(96), R = CH3, R = C Hg] is at least 70 times more potent than prednisolone (89). The above conversions... [Pg.104]

In 1968 a new methanol carbonylation process using rhodium promoted with iodide as catalyst was introduced by a modest letter (35). This catalyst possessed remarkable activity and selectivity for conversion to acetic acid. Nearly quantitative yields based on methanol were obtained at atmospheric pressure and a plant was built and operated in 1970 at Texas City, Tex. The effect on the world market has been exceptional (36). [Pg.67]

A brief review has appeared covering the use of metal-free initiators in living anionic polymerizations of acrylates and a comparison with Du Font s group-transfer polymerization method (149). Tetrabutylammonium thiolates mn room temperature polymerizations to quantitative conversions yielding polymers of narrow molecular weight distributions in dipolar aprotic solvents. Block copolymers are accessible through sequential monomer additions (149—151) and interfacial polymerizations (152,153). [Pg.170]

The first quantitative model, which appeared in 1971, also accounted for possible charge-transfer complex formation (45). Deviation from the terminal model for bulk polymerization was shown to be due to antepenultimate effects (46). Mote recent work with numerical computation and C-nmr spectroscopy data on SAN sequence distributions indicates that the penultimate model is the most appropriate for bulk SAN copolymerization (47,48). A kinetic model for azeotropic SAN copolymerization in toluene has been developed that successfully predicts conversion, rate, and average molecular weight for conversions up to 50% (49). [Pg.193]

Potency of hGH preparations is quantitatively deterrnined, in terms of mass per vial, by one or more chromatographic procedures (50). Biopotency is calculated from the mass-based potency using a conversion factor, typically 3 lU/mg. Traditionally a bioactivity assay using hypophysectomized rats has been used to determine potency however, the imprecision of this assay has resulted in its use only as a semiquantitative indicator of bioactivity (1), sometimes referred to as a bioidentity test. [Pg.198]

The quantitative conversion of thiosulfate to tetrathionate is unique with iodine. Other oxidant agents tend to carry the oxidation further to sulfate ion or to a mixture of tetrathionate and sulfate ions. Thiosulfate titration of iodine is best performed in neutral or slightly acidic solutions. If strongly acidic solutions must be titrated, air oxidation of the excess of iodide must be prevented by blanketing the solution with an inert gas, such as carbon dioxide or... [Pg.364]

Conversely, the rate of reaction of isocyanates with amines to yield ureas is both rapid and quantitative. Much has been written concerning the reaction... [Pg.452]

The first-stage catalysts for the oxidation to methacrolein are based on complex mixed metal oxides of molybdenum, bismuth, and iron, often with the addition of cobalt, nickel, antimony, tungsten, and an alkaU metal. Process optimization continues to be in the form of incremental improvements in catalyst yield and lifetime. Typically, a dilute stream, 5—10% of isobutylene tert-huty alcohol) in steam (10%) and air, is passed over the catalyst at 300—420°C. Conversion is often nearly quantitative, with selectivities to methacrolein ranging from 85% to better than 95% (114—118). Often there is accompanying selectivity to methacrylic acid of an additional 2—5%. A patent by Mitsui Toatsu Chemicals reports selectivity to methacrolein of better than 97% at conversions of 98.7% for a yield of methacrolein of nearly 96% (119). [Pg.253]

Nylon-12. Laurolactam [947-04-6] is the usual commercial monomer for nylon-12 [24937-16-4] manufacture. Its production begins with the mixture of cyclododecanol and cyclododecanone which is formed in the production of dodecanedioic acid starting from butadiene. The mixture is then converted quantitatively to cyclododecanone via dehydrogenation of the alcohol at 230—245°C and atmospheric pressure. The conversion to the lactam by the rearrangement of the oxime is similar to that for caprolactam manufacture. There are several other, less widely used commercial routes to laurolactam (171). [Pg.236]

AijAT-dicyclohexylcarhodiimide (DCC) also leads to essentially quantitative conversion of amic acids to isoimides, rather than imides (30,31). Combinations of trifluoroacetic anhydride—triethjlarnine and ethyl chi oroform a te—triethyl amine also result in high yields of isoimides (30). A kinetic study on model compounds has revealed that isoimides and imides are formed via a mixed anhydride intermediate (12) that is formed by the acylation of the carboxylic group of amic acid (8). [Pg.400]

The estimation of alkoxy groups is not such a simple task. One method (26,68) involves hydrolysis and oxidation of the Hberated alcohol with excess standard potassium dichromate solution. The excess may then be estimated iodometrically. This method is suitable only for methoxides, ethoxides, and isopropoxides quantitative conversion to carbon dioxide, acetic acid, and acetone, respectively, takes place. An alternative method for ethoxides is oxidation followed by distillation, and titration of the Hberated acetic acid. [Pg.28]

Treatment of quinoline with cyanogen bromide, the von Braun reaction (17), in methanol with sodium bicarbonate produces a high yield of l-cyano-2-methoxy-l,2-dihydroquinoline [880-95-5] (5) (18). Compound (5) is quantitatively converted to 3-bromoquinoline [5332-24-1], through the intermediate (6) [66438-70-8]. These conversions are accompHshed by sequential treatment with bromine in methanol, sodium carbonate, or concentrated hydrochloric acid in methanol. Similar conditions provide high yields of 3-bromomethylquinoHnes. [Pg.389]

Liquid scintillation counting is by far the most common method of detection and quantitation of -emission (12). This technique involves the conversion of the emitted P-radiation into light by a solution of a mixture of fluorescent materials or fluors, called the Hquid scintillation cocktail. The sensitive detection of this light is affected by a pair of matched photomultiplier tubes (see Photodetectors) in the dark chamber. This signal is amplified, measured, and recorded by the Hquid scintillation counter. Efficiencies of detection are typically 25—60% for tritium >90% for and P and... [Pg.439]

Chemical Analysis. The presence of siUcones in a sample can be ascertained quaUtatively by burning a small amount of the sample on the tip of a spatula. SiUcones bum with a characteristic sparkly flame and emit a white sooty smoke on combustion. A white ashen residue is often deposited as well. If this residue dissolves and becomes volatile when heated with hydrofluoric acid, it is most likely a siUceous residue (437). Quantitative measurement of total sihcon in a sample is often accompHshed indirectly, by converting the species to siUca or siUcate, followed by deterrnination of the heteropoly blue sihcomolybdate, which absorbs at 800 nm, using atomic spectroscopy or uv spectroscopy (438—443). Pyrolysis gc followed by mass spectroscopic detection of the pyrolysate is a particularly sensitive tool for identifying siUcones (442,443). This technique rehes on the pyrolytic conversion of siUcones to cycHcs, predominantly to [541-05-9] which is readily detected and quantified (eq. 37). [Pg.59]


See other pages where Conversion quantitative is mentioned: [Pg.165]    [Pg.20]    [Pg.62]    [Pg.499]    [Pg.687]    [Pg.518]    [Pg.518]    [Pg.386]    [Pg.4942]    [Pg.158]    [Pg.215]    [Pg.165]    [Pg.20]    [Pg.62]    [Pg.499]    [Pg.687]    [Pg.518]    [Pg.518]    [Pg.386]    [Pg.4942]    [Pg.158]    [Pg.215]    [Pg.34]    [Pg.347]    [Pg.140]    [Pg.324]    [Pg.88]    [Pg.486]    [Pg.267]    [Pg.313]    [Pg.425]    [Pg.405]    [Pg.150]    [Pg.423]    [Pg.329]    [Pg.6]   
See also in sourсe #XX -- [ Pg.55 , Pg.81 , Pg.154 ]




SEARCH



Conversion, quantitative high temperature

© 2024 chempedia.info