Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantitation nuclear magnetic resonance

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

As with other diffraction techniques (X-ray and electron), neutron diffraction is a nondestructive technique that can be used to determine the positions of atoms in crystalline materials. Other uses are phase identification and quantitation, residual stress measurements, and average particle-size estimations for crystalline materials. Since neutrons possess a magnetic moment, neutron diffraction is sensitive to the ordering of magnetically active atoms. It differs from many site-specific analyses, such as nuclear magnetic resonance, vibrational, and X-ray absorption spectroscopies, in that neutron diffraction provides detailed structural information averaged over thousands of A. It will be seen that the major differences between neutron diffraction and other diffiaction techniques, namely the extraordinarily... [Pg.648]

Some preliminary laboratory work is in order, if the information is not otherwise known. First, we ask what the time scale of the reaction is surely our approach will be different if the reaction reaches completion in 10 ms, 10 s, 10 min, or 10 h. Then, one must consider what quantitative analytical techniques can be used to monitor it progress. Sometimes individual samples, either withdrawn aliquots or individual ampoules, are taken. More often a nondestructive analysis is performed, the progress of the reaction being monitored continuously or intermittently by a technique such as ultraviolet-visible spectrophotometry or nuclear magnetic resonance. The fact that both reactants and products might contribute to the instrument reading will not prove to be a problem, as explained in the next chapter. [Pg.10]

In this review recent theoretical developments which enable quantitative measures of molecular orientation in polymers to be obtained from infra-red and Raman spectroscopy and nuclear magnetic resonance have been discussed in some detail. Although this is clearly a subject of some complexity, it has been possible to show that the systematic application of these techniques to polyethylene terephthalate and polytetramethylene terephthalate can provide unique information of considerable value. This information can be used on the one hand to gain an understanding of the mechanisms of deformation, and on the other to provide a structural understanding of physical properties, especially mechanical properties. [Pg.114]

Nuclear magnetic resonance (NMR) spectrometry has seldom been used as a quantitative analytical method but can have some practical importance in the characterization of surfactants [296-298]. 13C-NMR spectrometry has been used for the qualitative and also quantitative analysis of dodecyl, tetradecyl, and cetyl sulfates [299]. H- and, 3C-NMR spectra of sodium dodecyl sulfate are given by Mazumdar [300]. [Pg.284]

Many techniques for the analysis of anthocyanins have been used for almost a century and are still of importance, along with considerable advances in technologies such as mass spectroscopy (MS) and nuclear magnetic resonance (NMR). This section summarizes the analytical procedures for quantitative and qualitative analyses of anthocyanins, including classical and modem techniques. [Pg.480]

Perhaps the most revolutionary development has been the application of on-line mass spectroscopic detection for compositional analysis. Polymer composition can be inferred from column retention time or from viscometric and other indirect detection methods, but mass spectroscopy has reduced much of the ambiguity associated with that process. Quantitation of end groups and of co-polymer composition can now be accomplished directly through mass spectroscopy. Mass spectroscopy is particularly well suited as an on-line GPC technique, since common GPC solvents interfere with other on-line detectors, including UV-VIS absorbance, nuclear magnetic resonance and infrared spectroscopic detectors. By contrast, common GPC solvents are readily adaptable to mass spectroscopic interfaces. No detection technique offers a combination of universality of analyte detection, specificity of information, and ease of use comparable to that of mass spectroscopy. [Pg.375]

R.J. Lehnert, P.J. Hendra, N. Everall and N.J. Clayden, Comparative quantitative study on the crystallinity of poly(tetrafluoroethylene) including Raman, infra-red and F nuclear magnetic resonance spectroscopy, Polymer, 38(7) (1997) 1521-1535. [Pg.12]

Electron spin resonance, nuclear magnetic resonance, and neutron diffraction methods allow a quantitative determination of the degree of covalence. The reasonance methods utilize the hyperfine interaction between the spin of the transferred electrons and the nuclear spin of the ligands (Stevens, 1953), whereas the neutron diffraction methods use the reduction of spin of the metallic ion as well as the expansion of the form factor [Hubbard and Marshall, 1965). The Mossbauer isomer shift which depends on the total electron density of the nucleus (Walker et al., 1961 Danon, 1966) can be used in the case of Fe. It will be particularly influenced by transfer to the empty 4 s orbitals, but transfer to 3 d orbitals will indirectly influence the 1 s, 2 s, and 3 s electron density at the nucleus. [Pg.38]

Quantitative structure-physical property relationships (QSPR). There are two types of physical properties we must consider ground state properties and properties which depend on the difference in energy between the ground state and an excited state. Examples of the former are bond lengths, bond angles and dipole moments. The latter include infrared, ultraviolet, nuclear magnetic resonance and other types of spectra, ionization potentials and electron affinities. [Pg.605]

Nuclear magnetic resonance spectrometry has been used to quantitate aspirin in a combination product with a coefficient of variation of 1.1.102 For quantitation, the shift at 2.3 ppm representing the ester methyl group was used. [Pg.25]

Modern spectroscopy plays an important role in pharmaceutical analysis. Historically, spectroscopic techniques such as infrared (IR), nuclear magnetic resonance (NMR), and mass spectrometry (MS) were used primarily for characterization of drug substances and structure elucidation of synthetic impurities and degradation products. Because of the limitation in specificity (spectral and chemical interference) and sensitivity, spectroscopy alone has assumed a much less important role than chromatographic techniques in quantitative analytical applications. However, spectroscopy offers the significant advantages of simple sample preparation and expeditious operation. [Pg.265]

FIGURE 4.9 60-MHz H -nuclear magnetic resonance spectrum of Bz-D/L-Val-L-Lys(z)-OMe obtained by coupling Bz-L-Val-OH with H-L-Lys(Z)-OMe, using DCC in the presence of HOBt in dimethylformamide at 25°C.45 See text for details of quantitation. [Pg.105]

R. Meusinger, Qualitative and quantitative determination of oxygenates in gasolines using H nuclear magnetic resonance spectroscopy, Anal. Chim. Acta, 391, 277-288 (1999). [Pg.333]

Currently, there are no accurate methods available for quantifying the aliphatic bridges in the coal macromolecule. Quantitative nature of the application of infrared (IR) spectroscopy is limited to certain general types of functional groups or bond types. Nuclear magnetic resonance spectroscopy, despite the success of dipolar dephasing techniques to decipher the extent of substitution on carbon atoms, is still inadequate to distinguish distinct structural entities . [Pg.300]


See other pages where Quantitation nuclear magnetic resonance is mentioned: [Pg.313]    [Pg.313]    [Pg.313]    [Pg.313]    [Pg.398]    [Pg.340]    [Pg.268]    [Pg.394]    [Pg.515]    [Pg.194]    [Pg.1230]    [Pg.24]    [Pg.241]    [Pg.4]    [Pg.1230]    [Pg.131]    [Pg.323]    [Pg.26]    [Pg.135]    [Pg.263]    [Pg.5]    [Pg.167]    [Pg.142]    [Pg.685]    [Pg.355]    [Pg.268]    [Pg.335]    [Pg.839]    [Pg.76]    [Pg.2]    [Pg.45]    [Pg.9]    [Pg.53]    [Pg.54]    [Pg.514]    [Pg.514]   
See also in sourсe #XX -- [ Pg.302 ]




SEARCH



Carbon-13 nuclear magnetic resonance quantitation

Nuclear magnetic resonance metabolite quantitation

Nuclear magnetic resonance quantitative data

Nuclear magnetic resonance quantitative interpretation

Nuclear magnetic resonance spectroscopy quantitative analysis

Quantitative Nuclear Magnetic Resonance Methods

Quantitative analysis, nuclear magnetic resonance

Quantitative nuclear magnetic

Quantitative nuclear magnetic resonance

Quantitative nuclear magnetic resonance

Solid state nuclear magnetic resonance quantitative

Solid-state nuclear magnetic resonance quantitative analysis

© 2024 chempedia.info