Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Other diffraction techniques

Like X-ray diffraction patterns, neutron and electron diffraction patterns provide averaged information about the structure of a compound. Details of these techniques are given in works by Hirsch et al. (1965) and West (1988). Neutron diffraction involves interaction of neutrons with the nuclei of the atoms. As the neutrons are scattered relatively evenly by all the atoms in the compound, they serve to indicate the positions of the protons in an oxide hydroxide. This technique has been applied to elucidation of the structure and/or magnetic properties of goethite (Szytula et al., 1968 Forsyth et al., 1968), akaganeite (Szytula et al., 1970), lepidocrocite (Oles et al., 1970 Christensen Norlund-Christensen, 1978), hematite (Samuelson Shirane, 1970 Fernet et al., 1984) and wiistite (Roth, 1960 Cheetham et al., 1971 Battle Cheetham, 1979). A neutron diffractogram of a 6-line ferrihydrite was recently produced by Jansen et al. (2002) and has helped to refine its structure (see chap. 2). [Pg.177]


As with other diffraction techniques (X-ray and electron), neutron diffraction is a nondestructive technique that can be used to determine the positions of atoms in crystalline materials. Other uses are phase identification and quantitation, residual stress measurements, and average particle-size estimations for crystalline materials. Since neutrons possess a magnetic moment, neutron diffraction is sensitive to the ordering of magnetically active atoms. It differs from many site-specific analyses, such as nuclear magnetic resonance, vibrational, and X-ray absorption spectroscopies, in that neutron diffraction provides detailed structural information averaged over thousands of A. It will be seen that the major differences between neutron diffraction and other diffiaction techniques, namely the extraordinarily... [Pg.648]

An important conceptual, or even philosophical, difference between the orbital/wavefunction methods and the density functional methods is that, at least in principle, the density functional methods do not appeal to orbitals. In the former case the theoretical entities are completely unobservable whereas electron density invoked by density functional theories is a genuine observable. Experiments to observe electron densities have been routinely conducted since the development of X-ray and other diffraction techniques (Coppens, 2001).18... [Pg.104]

Electron diffraction has a main advantage with respect to the other diffraction techniques it can be performed at a microscopic and nanoscopic scales in correlation with the image of the diffracted area. The various types of electron diffraction pattern have many applications both in the fields of structure and microstructure characterizations. [Pg.72]

This demonstrates that electron microdiffraction may compete with other diffraction techniques but is not easy to use. Nowadays synchrotron radiation is probably more convenient, in most cases, for the observation of very weak sublattice reflections even from small crystallites however not as small as with electron microdiffraction. [Pg.208]

For complex systems that are difficult or impossible to crystallize (e.g., biological or environmental samples), other diffraction techniques such as EXAFS spectroscopy can often provide details about the Pb coordination environment. The information about a metal complex that is available from EXAFS spectroscopy includes the coordination number of the metal ion and bond distances. Bond angles and geometry are difficult to determine directly but can be inferred from careful comparisons to model complexes of known geometry (248, 249). The identity of coordinated atoms can also be determined from the EXAFS spectrum, although it is often difficult to differentiate between atoms of similar atomic number (e.g., N vs O) (250). Only a few Pb(II) systems have been examined by EXAFS, but the following studies provide excellent examples of the kinds of questions EXAFS is uniquely suited to answer (157, 158, 162, 251-259). [Pg.51]

Among the modem procedures utilized to estabUsh the chemical stmcture of a molecule, nuclear magnetic resonance (nmr) is the most widely used technique. Mass spectrometry is distinguished by its abiUty to determine molecular formulas on minute amounts, but provides no information on stereochemistry. The third most important technique is x-ray diffraction crystallography, used to estabUsh the relative and absolute configuration of any molecule that forms suitable crystals. Other physical techniques, although useful, provide less information on stmctural problems. [Pg.306]

Instrumental Methods for Bulk Samples. With bulk fiber samples, or samples of materials containing significant amounts of asbestos fibers, a number of other instmmental analytical methods can be used for the identification of asbestos fibers. In principle, any instmmental method that enables the elemental characterization of minerals can be used to identify a particular type of asbestos fiber. Among such methods, x-ray fluorescence (xrf) and x-ray photo-electron spectroscopy (xps) offer convenient identification methods, usually from the ratio of the various metal cations to the siUcon content. The x-ray diffraction technique (xrd) also offers a powerfiil means of identifying the various types of asbestos fibers, as well as the nature of other minerals associated with the fibers (9). [Pg.352]

Characterization. Ceramic bodies are characterized by density, mass, and physical dimensions. Other common techniques employed in characterizing include x-ray diffraction (XRD) and electron or petrographic microscopy to determine crystal species, stmcture, and size (100). Microscopy (qv) can be used to determine chemical constitution, crystal morphology, and pore size and morphology as well. Mercury porosknetry and gas adsorption are used to characterize pore size, pore size distribution, and surface area (100). A variety of techniques can be employed to characterize bulk chemical composition and the physical characteristics of a powder (100,101). [Pg.314]

The STEM instrument itself can produce highly focused high-intensity beams down to 2 A if a field-emission source is used. Such an instrument provides a higher spatial resolution compositional analysis than any other widely used technique, but to capitalize on this requires very thin samples, as stated above. EELS and EDS are the two composition techniques usually found on a STEM, but CL, and even AES are sometimes incorporated. In addition simultaneous crystallographic information can be provided by diffraction, as in the TEM, but with 100 times better spatial resolution. The combination of diffraction techniques and analysis techniques in a TEM or STEM is termed Analytical Electron Microscopy, AEM. A well-equipped analytical TEM or STEM costs well over 1,000,000. [Pg.119]

Solid state NMR is a relatively recent spectroscopic technique that can be used to uniquely identify and quantitate crystalline phases in bulk materials and at surfaces and interfaces. While NMR resembles X-ray diffraction in this capacity, it has the additional advantage of being element-selective and inherently quantitative. Since the signal observed is a direct reflection of the local environment of the element under smdy, NMR can also provide structural insights on a molecularlevel. Thus, information about coordination numbers, local symmetry, and internuclear bond distances is readily available. This feature is particularly usefrd in the structural analysis of highly disordered, amorphous, and compositionally complex systems, where diffraction techniques and other spectroscopies (IR, Raman, EXAFS) often fail. [Pg.460]

After a temptative structure-based classification of different kinds of polymorphism, a description of possible crystallization and interconversion conditions is presented. The influence on the polymorphic behavior of comonomeric units and of a second polymeric component in miscible blends is described for some polymer systems. It is also shown that other characterization techniques, besides diffraction techniques, can be useful in the study of polymorphism in polymers. Finally, some effects of polymorphism on the properties of polymeric materials are discussed. [Pg.183]

Although the diffraction techniques are unique in providing detailed information on the structural organization at the molecular level in the different crystalline forms, there are other characterization techniques which are sensitive to the chain conformation and in some cases to the chain packing, which can be used advantageously (and in some case more efficiently than diffraction techniques) in the recognition and quantification of the different polymorphs in polymeric materials. [Pg.207]

Besides synthesis, current basic research on conducting polymers is concentrated on structural analysis. Structural parameters — e.g. regularity and homogeneity of chain structures, but also chain length — play an important role in our understanding of the properties of such materials. Research on electropolymerized polymers has concentrated on polypyrrole and polythiophene in particular and, more recently, on polyaniline as well, while of the chemically produced materials polyacetylene stih attracts greatest interest. Spectroscopic methods have proved particularly suitable for characterizing structural properties These comprise surface techniques such as XPS, AES or ATR, on the one hand, and the usual methods of structural analysis, such as NMR, ESR and X-ray diffraction techniques, on the other hand. [Pg.16]

Since the vibrational spectra of sulfur allotropes are characteristic for their molecular and crystalline structure, vibrational spectroscopy has become a valuable tool in structural studies besides X-ray diffraction techniques. In particular, Raman spectroscopy on sulfur samples at high pressures is much easier to perform than IR spectroscopical studies due to technical demands (e.g., throughput of the IR beam, spectral range in the far-infrared). On the other hand, application of laser radiation for exciting the Raman spectrum may cause photo-induced structural changes. High-pressure phase transitions and structures of elemental sulfur at high pressures were already discussed in [1]. [Pg.82]

The STEM Is Ideally suited for the characterization of these materials, because one Is normally measuring high atomic number elements In low atomic number metal oxide matrices, thus facilitating favorable contrast effects for observation of dispersed metal crystallites due to diffraction and elastic scattering of electrons as a function of Z number. The ability to observe and measure areas 2 nm In size In real time makes analysis of many metal particles relatively rapid and convenient. As with all techniques, limitations are encountered. Information such as metal surface areas, oxidation states of elements, chemical reactivity, etc., are often desired. Consequently, additional Input from other characterization techniques should be sought to complement the STEM data. [Pg.375]

Secondly, for some crystalline systems, the structure obtained by diffraction techniques may be incomplete. For example, in some cases the diffraction data may not reveal dynamic aspects of the solid-state structure (as in the case of fluxional organo-metallics) and in others it may not be possible to distinguish clearly between different atoms (as for example 27A1 and 29Si in zeolites) and a combination of the NMR and x-ray data will yield a more complete and meaningful description of the structure. [Pg.393]


See other pages where Other diffraction techniques is mentioned: [Pg.49]    [Pg.253]    [Pg.265]    [Pg.658]    [Pg.177]    [Pg.185]    [Pg.83]    [Pg.188]    [Pg.450]    [Pg.221]    [Pg.257]    [Pg.2395]    [Pg.35]    [Pg.1]    [Pg.223]    [Pg.49]    [Pg.253]    [Pg.265]    [Pg.658]    [Pg.177]    [Pg.185]    [Pg.83]    [Pg.188]    [Pg.450]    [Pg.221]    [Pg.257]    [Pg.2395]    [Pg.35]    [Pg.1]    [Pg.223]    [Pg.685]    [Pg.272]    [Pg.348]    [Pg.69]    [Pg.1125]    [Pg.131]    [Pg.85]    [Pg.14]    [Pg.384]    [Pg.47]    [Pg.145]    [Pg.349]    [Pg.109]    [Pg.94]    [Pg.150]    [Pg.310]    [Pg.63]   


SEARCH



Diffraction techniques

© 2024 chempedia.info