Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Normalized standard method

For hardness above 95 and below 30 IRHD the normal standard method is not very satisfactory. In either case a very small change in hardness number results from unit change in indentation. At the high end the indentation needs to be increased relative to the standard test to give better discrimination and at the low end the indentation needs to be decreased to prevent excessive deformation of soft rubbers. [Pg.123]

The normalized standard method uses the same procedure as the single standard method but several concentrations of each standard have to be scanned. This allows average proportionality constants to... [Pg.51]

The usual practical situation is that in which two solids are bonded by means of some kind of glue or cement. A relatively complex joint is illustrated in Fig. XII-14. The strength of a joint may be measured in various ways. A common standard method is the peel test in which the normal force to separate the joint... [Pg.455]

Normality is an older unit of concentration that, although once commonly used, is frequently ignored in today s laboratories. Normality is still used in some handbooks of analytical methods, and, for this reason, it is helpful to understand its meaning. For example, normality is the concentration unit used in Standard Methods for the Examination of Water and Wastewaterf a commonly used source of analytical methods for environmental laboratories. [Pg.16]

Quantitative Analysis for a Single Analyte The concentration of a single analyte is determined by measuring the absorbance of the sample and applying Beer s law (equation 10.5) using any of the standardization methods described in Chapter 5. The most common methods are the normal calibration curve and the method of standard additions. Single-point standardizations also can be used, provided that the validity of Beer s law has been demonstrated. [Pg.400]

Since the junction potential is usually of unknown value, it is normally impossible to directly calculate the analyte s concentration using the Nernst equation. Quantitative analytical work is possible, however, using the standardization methods discussed in Chapter 5. [Pg.471]

Ruggedness testing is often performed by the laboratory developing the standard method. Potential factors are identified and their effects evaluated by performing the analysis while the factors are held at two levels. Normally one level for each factor is that given in the procedure, and the other is a level likely to be encountered when the procedure is used by other laboratories. [Pg.684]

A convenient method for assessing the extent of surface oxidation is the measurement of volatile content. This standard method measures the weight loss of the evolved gases on heating up to 950°C in an inert atmosphere. The composition of these gases consists of three principal components hydrogen, carbon monoxide, and carbon dioxide. The volatile content of normal furnace blacks is under 1.5%, and the volatile content of oxidized special grades is 2.0 to 9.5%. [Pg.543]

Because of the complex nature of the discharge conditions, GD-OES is a comparative analytical method and standard reference materials must be used to establish a unique relationship between the measured line intensities and the elemental concentration. In quantitative bulk analysis, which has been developed to very high standards, calibration is performed with a set of calibration samples of composition similar to the unknown samples. Normally, a major element is used as reference and the internal standard method is applied. This approach is not generally applicable in depth-profile analysis, because the different layers encountered in a depth profile of ten comprise widely different types of material which means that a common reference element is not available. [Pg.225]

Normally a calibration curve—molar mass against the total retention volume—exists for every GPC column or column combination. As a measure of the separation efficiency of a given column (set) the difference in the retention of two molar masses can be determined from this calibration curve. The same eluent and the same type of calibration standards have to be used for the comparison of different columns or sets. However, this volume difference is not in itself sufficient. In a first approximation the cross section area does not contribute to the separation. Dividing the retention difference by the cross section area normalizes the retention volume for different diameters of columns. The ISO standard method (3) contains such an equation... [Pg.436]

HPA catalyzed liquid phase nitration was eairied out in a Teflon-lined stainless autoclave of 200 mL equipped with a magnetic stirrer. Reactants and HPA were quantitatively added to the autoclave, which was sealed and heated in an oil-bath. Products were analyzed by GC with OV-101 30 m capillary column and FID detector by using calibrated area normalization and internal standard method. All products were confirmed by GC-MASS analysis. [Pg.354]

In the incremental or decremental technique, another designation for the standard addition (or subtraction) technique, one adds increments of standard solution to the sample, or vice versa. (In the decremental technique the standard precipitates or complexes the ion under test.) When the sample itself is incrementally added to the standard, the latter may have received a previous addition of ISA and/or pH adjuster, but in the reverse method this addition may be made to the sample. However, for the specific example of a univalent anion we shall show how the normal incremental method works38 and that in fact the addition of ISA is not necessary. [Pg.70]

In Chapters 63 through 67 [1-5], we devised a test for the amount of nonlinearity present in a set of comparative data (e.g., as are created by any of the standard methods of calibration for spectroscopic analysis), and then discovered a flaw in the method. The concept of a measure of nonlinearity that is independent of the units that the X and Y data have is a good one. The flaw is that the nonlinearity measurement depends on the distribution of the data uniformly distributed data will provide one value, Normally distributed data will provide a different value, randomly distributed (i.e., what is commonly found in real data sets) will give still a different value, and so forth, even if the underlying relationship between the pairs of values is the same in all cases. [Pg.459]

Solution preparation, standardization, and sample analysis activities all involve solution concentration. Let us review molarity and normality as methods of expressing solution concentration. [Pg.67]

Dialkyl peroxides, which are normally difficult to prepare by standard methods, can be conveniently synthesized by the catalysed reaction of alkyl peroxides and... [Pg.74]

Trichloroacetimidates, CCl,C(NH)OR, have been prepared under mild conditions by the reactions of alcohols with trichloroacetonitrile under basic conditions promoted by catalytic amounts of tetra-n-butylammonium hydrogen sulphate [72]. The procedure is far superior to the standard methods which normally require anhydrous reaction conditions. [Pg.103]

In HPLC, a sample is separated into its components based on the interaction and partitioning of the different components of the sample between the liquid mobile phase and the stationary phase. In reversed phase HPLC, water is the primary solvent and a variety of organic solvents and modifiers are employed to change the selectivity of the separation. For ionizable components pH can play an important role in the separation. In addition, column temperature can effect the separation of some compounds. Quantitation of the interested components is achieved via comparison with an internal or external reference standard. Other standardization methods (normalization or 100% standardization) are of less importance in pharmaceutical quality control. External standards are analyzed on separate chromatograms from that of the sample while internal standards are added to the sample and thus appear on the same chromatogram. [Pg.274]

In the mass balance approach, all impurities are quantified and subtracted from the absolute value of 100%. This approach will result in a purity value that, if all impurities are accounted for, is more accurate than the external or internal standard methods. However, the ability to identify all impurities in a given drug substance may require the use of hyphenated detection techniques and could be extremely costly to complete on a regular basis. Therefore, a related approach, called Area Normalization, is often used where the majority of the impurities can be identified and quantified in a single chromatogram. In the simplest case, all of the impurities would be assumed to have the same relative response... [Pg.372]

Analytical method validation forms the first level of QA in the laboratory. Analytical quality assurance (AQA) is the complete set of measures a laboratory must undertake to ensure that it is able to achieve high-quality data continuously. Besides the use of validation and/or standardized methods, these measures are effective IQC procedures (use of reference materials, control charts, etc.), with participation in proficiency testing schemes and accreditation to an international standard, normally ISO/IEC 17025 [4]. Method validation and the different aspects of QA form the subject of Section 8.2.3. [Pg.747]

The top-down approach is often used when there are method validation data from properly conducted interlaboratory studies, and when the laboratory using reproducibility as the measurement uncertainty can demonstrate that such data are applicable to its operations. Chapter 5 describes these types of studies in greater detail. In assigning the reproducibility standard deviation, sR, to the measurement uncertainty from method validation of a standard method, it is assumed that usual laboratory variables (mass, volume, temperature, times, pH) are within normal limits (e.g., 2°C for temperature, 5% for timing of steps, 0.05 for pH). Clause 5.4.6.2 in ISO/ 17025 (ISO/IEC 2005) reads, In those cases where a well-recognized test method specifies limits to the values of the major sources of uncertainty of measurement and specifies the form of presentation of the calculated results, the laboratory is considered to have satisfied this clause by following the test method and reporting instructions. ... [Pg.171]


See other pages where Normalized standard method is mentioned: [Pg.275]    [Pg.841]    [Pg.225]    [Pg.258]    [Pg.51]    [Pg.417]    [Pg.570]    [Pg.33]    [Pg.221]    [Pg.192]    [Pg.25]    [Pg.157]    [Pg.541]    [Pg.419]    [Pg.153]    [Pg.221]    [Pg.24]    [Pg.637]    [Pg.53]    [Pg.311]    [Pg.9]    [Pg.389]    [Pg.376]    [Pg.89]    [Pg.50]    [Pg.99]    [Pg.339]   


SEARCH



Method standardization

Standard method

Standard normal

Standardizing method

© 2024 chempedia.info