Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Normal forces

An interesting aspect of friction is the manner in which the area of contact changes as sliding occurs. This change may be measured either by conductivity, proportional to if, as in the case of metals, it is limited primarily by a number of small metal-to-metal junctions, or by the normal adhesion, that is, the force to separate the two substances. As an illustration of the latter, a steel ball pressed briefly against indium with a load of IS g required about the same IS g for its subsequent detachment [37]. If relative motion was set in, a value of S was observed and, on stopping, the normal force for separation had risen to 100 g. The ratio of 100 IS g may thus be taken as the ratio of junction areas in the two cases. [Pg.442]

The usual practical situation is that in which two solids are bonded by means of some kind of glue or cement. A relatively complex joint is illustrated in Fig. XII-14. The strength of a joint may be measured in various ways. A common standard method is the peel test in which the normal force to separate the joint... [Pg.455]

Meyer G and Amer N M 1990 Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope Appl. Phys. Lett. 57 2089... [Pg.1725]

The creation terms embody the changes in momentum arising from external forces in accordance with Newton s second law (F = ma). The body forces arise from gravitational, electrostatic, and magnetic fields. The surface forces are the shear and normal forces acting on the fluid diffusion of momentum, as manifested in viscosity, is included in these terms. In practice the vector equation is usually resolved into its Cartesian components and the normal stresses are set equal to the pressures over those surfaces through which fluid is flowing. [Pg.108]

To obtain a metallurgical bond between two metals, the atoms of each metal must be brought sufficiently close so that their normal forces of interatomic attraction produce a bond. The surfaces of metals and alloys must not be covered with films of oxides, nitrides, or adsorbed gases. When such films are present, metal surfaces do not bond satisfactorily (see Metal surface treatments). [Pg.143]

The Weissenberg Rheogoniometer (49) is a complex dynamic viscometer that can measure elastic behavior as well as viscosity. It was the first rheometer designed to measure both shear and normal stresses and can be used for complete characteri2ation of viscoelastic materials. Its capabiUties include measurement of steady-state rotational shear within a viscosity range of 10 — mPa-s at shear rates of, of normal forces (elastic... [Pg.189]

Friction and Adhesion. The coefficient of friction p. is the constant of proportionality between the normal force P between two materials in contact and the perpendicular force F required to move one of the materials relative to the other. Macroscopic friction occurs from the contact of asperities on opposing surfaces as they sHde past each other. On the atomic level friction occurs from the formation of bonds between adjacent atoms as they sHde past one another. Friction coefficients are usually measured using a sliding pin on a disk arrangement. Friction coefficients for ceramic fibers in a matrix have been measured using fiber pushout tests (53). For various material combinations (43) ... [Pg.326]

Fracture mechanics (qv) affect adhesion. Fractures can result from imperfections in a coating film which act to concentrate stresses. In some cases, stress concentration results in the propagation of a crack through the film, leading to cohesive failure with less total stress appHcation. Propagating cracks can proceed to the coating/substrate interface, then the coating may peel off the interface, which may require much less force than a normal force pull would require. [Pg.347]

The contact ends of printed circuit boards are copper. Alloys of nickel and iron are used as substrates in hermetic connectors in which glass (qv) is the dielectric material. Terminals are fabricated from brass or copper from nickel, for high temperature appHcations from aluminum, when aluminum conductors are used and from steel when high strength is required. Because steel has poor corrosion resistance, it is always plated using a protective metal, such as tin (see Tin and tin alloys). Other substrates can be unplated when high contact normal forces, usually more than 5 N, are available to mechanically dismpt insulating oxide films on the surfaces and thereby assure metaUic contact (see Corrosion and corrosion control). [Pg.30]

Thus normal force at interface, F = p x 2nRL = 3.02x2jrx5xl5... [Pg.442]

Pressure drop is a concern wherever filters and, to a lesser extent, air cleaners are employed in the path of normal forced ventilation system. [Pg.58]

When two bodies are in contact and there is a tendency for them to slide with respect to each other, a tangential friction force is developed that opposes the motion. For dry surfaces this is called dry friction or coulomb friction. For lubricated surfaces the friction force is called fluid friction, and it is treated in the study of fluid mechanics. Consider a block of weight W resting on a flat surface as shown in Figure 2-5. The weight of the block is balanced by a normal force N that is equal and opposite to the body force. Now, if some sufficiently small sidewise force P is applied (Figure 2-5b) it will be opposed by a friction force F that is equal and opposite to P and the block will remain fixed. If P is increased, F will simultaneously increase at the same rate until... [Pg.146]

The maximum value of the static friction force is proportional to the normal force as... [Pg.147]

The frictional properties of plastics are of particular importance to applications in machine products and in sliding applications such as belting and structural units such as sliding doors. The range of friction properties are rather extensive. The relationship between the normal force and the friction force is used to define the coefficient of static friction. [Pg.94]

A different type of low friction or low drag application is encountered with sliding doors or conveyor belts sliding on support surfaces. In applications like this the normal forces are generally quite small and the friction load problems are of the sticking variety. Some plastics exhibit excellent track surfaces for this type of application. TFEs have the lowest coefficient of any solid material and represent one of the most slippery surfaces known. The major problem with TFE is that its abrasion resistance is low so that most of the applications utilize filled compositions with ceramic filler materials to improve the abrasion resistance. [Pg.95]

The term hfEFn is the product of the coefficient of friction iiF and the sum FW of the normal forces per unit length between the particles and the wall. [Pg.206]

TJ N Sum of normal forces between particles and wall in length l of pipe N MIT 2... [Pg.230]

Rather than quote some (mass normalized) force on the sample at each of several field strengths, it is sufficient to report the slope of the linear part of the curve in Fig. 5-6. This slope is called the magnetic susceptibility of the sample. Units for susceptibility, x > and related quantities to be discussed in this section are reviewed in Box 5-3. [Pg.84]

Figure 4. When a muscle contracts isotonically or a constant resisting force is imposed on it during a contraction, the velocity at which it shortens quickly comes to a constant. The force-velocity curve shows the relationship between the force applied to a muscle and the steady-state velocity of shortening. As in all other muscles, the force-velocity curve of smooth muscle is a rectangular hyperbola for all positive shortening velocities. In order to compare the behavior of muscles of different lengths and diameters, it is common to normalize force and velocity by dividing each by its maximum value and expressing the result as a percentage, nd... Figure 4. When a muscle contracts isotonically or a constant resisting force is imposed on it during a contraction, the velocity at which it shortens quickly comes to a constant. The force-velocity curve shows the relationship between the force applied to a muscle and the steady-state velocity of shortening. As in all other muscles, the force-velocity curve of smooth muscle is a rectangular hyperbola for all positive shortening velocities. In order to compare the behavior of muscles of different lengths and diameters, it is common to normalize force and velocity by dividing each by its maximum value and expressing the result as a percentage, nd...
Surface force apparatus has been applied successfully over the past years for measuring normal surface forces as a function of surface gap or film thickness. The results reveal, for example, that the normal forces acting on confined liquid composed of linear-chain molecules exhibit a periodic oscillation between the attractive and repulsive interactions as one surface continuously approaches to another, which is schematically shown in Fig. 19. The period of the oscillation corresponds precisely to the thickness of a molecular chain, and the oscillation amplitude increases exponentially as the film thickness decreases. This oscillatory solvation force originates from the formation of the layering structure in thin liquid films and the change of the ordered structure with the film thickness. The result provides a convincing example that the SFA can be an effective experimental tool to detect fundamental interactions between the surfaces when the gap decreases to nanometre scale. [Pg.17]

Another remarkable feature of thin film rheology to be discussed here is the quantized" property of molecularly thin films. It has been reported [8,24] that measured normal forces between two mica surfaces across molecularly thin films exhibit oscillations between attraction and repulsion with an amplitude in exponential growth and a periodicity approximately equal to the dimension of the confined molecules. Thus, the normal force is quantized, depending on the thickness of the confined films. The quantized property in normal force results from an ordering structure of the confined liquid, known as the layering, that molecules are packed in thin films layer by layer, as revealed by computer simulations (see Fig. 12 in Section 3.4). The quantized property appears also in friction measurements. Friction forces between smooth mica surfaces separated by three layers of the liquid octamethylcyclotetrasiloxane (OMCTS), for example, were measured as a function of time [24]. Results show that friction increased to higher values in a quantized way when the number of layers falls from n = 3 to n = 2 and then to M = 1. [Pg.84]

When two solid bodies have been pressed together under applied load, a normal force is generated at the contact surfaces due to repulsive interaction between atoms. The normal force gradually decreases if the solids in contact are separated along the direction normal to the contact surfaces. In many cases, however, the contact holds even if the normal... [Pg.167]

Figure 1 shows the results obtained by Qian et al. [1 ] in a process when AFM probe approaches and then separates from a SiQ2 substrate. The normal force required for separating the probe-substrate contact reads 33 nN. From a thermodynamic point of view, adhesion is in fact a state of the system at the energy minimum when the contact pairs interact with each other through interface, and additional work has to be applied to change the state of the system. [Pg.167]

In the above discussions the only normal force on the sliding molecule results from the attractive interactions. When externally applied load or pressure is to be considered, the energy balance has to be modihed as... [Pg.181]

Fig. 18—Friction force images of L-B monolayer film, normal force 1 nN (scan range 2 /u.m). (a) Monolayer L-B film, (b) four-layer L-B films. Fig. 18—Friction force images of L-B monolayer film, normal force 1 nN (scan range 2 /u.m). (a) Monolayer L-B film, (b) four-layer L-B films.

See other pages where Normal forces is mentioned: [Pg.457]    [Pg.388]    [Pg.553]    [Pg.554]    [Pg.554]    [Pg.189]    [Pg.532]    [Pg.178]    [Pg.187]    [Pg.189]    [Pg.460]    [Pg.474]    [Pg.289]    [Pg.211]    [Pg.4]    [Pg.49]    [Pg.724]    [Pg.896]    [Pg.275]    [Pg.10]    [Pg.16]    [Pg.25]    [Pg.178]    [Pg.185]    [Pg.189]    [Pg.192]   
See also in sourсe #XX -- [ Pg.217 , Pg.269 ]

See also in sourсe #XX -- [ Pg.53 ]

See also in sourсe #XX -- [ Pg.213 , Pg.215 , Pg.444 ]




SEARCH



Flow-induced phenomena of lyotropic polymer liquid crystals the negative normal force effect and bands perpendicular to shear

Force constants, in normal coordinate analysis

Force in Normal Direction

Normal force measurement

Normal force phenomena

Normal force transducer

Normal grinding force

Probe normal force

Relationship of viscosity to normal force

Spreadability Using Force and Under Normal Gravity

© 2024 chempedia.info