Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitriles continued

The addition of carbenes and carbenoids to imines and nitriles continues to be a popular approach to aziridines and 2//-azirines. These processes have been well reviewed by Deyrup (B-83MI101-01). Dichlorocarbene and other dihalocarbenes have been added to a wide variety of imines to provide dihaloaziridines. A recent example is shown in Equation (64), illustrating the use of phase-transfer conditions <93H(36)69i). The treatment of azides with excess dichlorocarbene results in the formation of the 2,2,3,3-tetrachloroaziridines (92TL2339). Presumably, the azide is converted by dichlorocarbene to the imidoyl dihalide RN=CC12 which reacts further with dichlorocarbene. Transition metal-promoted reaction of a-diazoesters with imines provides 2-(alkoxycarbonyl)aziridines [Pg.46]

Treatment of 6-ethoxy-2-phenyl-3-carboxy-5,6-dihydro-4/7-pyran with hydroxylamine transforms the heterocycle to 2-phenylnicotinate <97JHC93>. However, an isoxazole is obtained if the pyran is substituted with an acyl group rather than the ester functionality. Nitriles continue to be key components in pyridine synthesis. The bicyclic ketal 8 is converted cleanly to the pyridine 9 in the presence of an alkyl nitrile using 5 equiv of TMSOMs and 1 equiv of BFrEt20. This combination, generating the active ingredient boron difluoromethanesulfonate, avoids the byproduct cyclohexanones <97JHC325>. [Pg.227]

TABLE XI-27. Solvolysis of Side-Chain Nitriles (Continued)... [Pg.552]

Carboxylic add amides from nitriles Continuous process... [Pg.50]

Listing of triorganotin amides, imides and nitriles continues in Table 235. [Pg.792]

Hydrolysis of />-Tolunitrile. As in the case of benzonitrile, alkaline h> drolysis is preferable to hydrolysis by 70% sulphuric acid. Boil a mixture of 5 g. of p-tolunitrile, 75 ml. of 10% aqueous sodium hydroxide solution and 15 ml. of ethanol under a reflux water-condenser. The ethanol is added partly to increase the speed of the hydrolysis, but in particular to prevent the nitrile (which volatilises in the steam) from actually crystallising in the condenser. The solution becomes clear after about i hour s heating, but the boiling should be continued for a total period of 1-5 hours to ensure complete hydrolysis. Then precipitate and isolate the p-toluic acid, CH3CgH4COOH, in precisely the same way as the benzoic acid in the above hydrolysis of benzonitrile. Yield 5 5 g. (almost theoretical). The p-toluic acid has m.p. 178°, and may be recrystallised from a mixture of equal volumes of water and rectified spirit. [Pg.195]

Hydrolysis may be effected with 10-20 per cent, sodium hydroxide solution (see p-Tolunitrile and Benzonitrile in Section IV,66) or with 10 per cent, methyl alcoholic sodium hydroxide. For diflScult cases, e.g., a.-Naphthoniirile (Section IV,163), a mixture of 50 per cent, sulphuric acid and glacial acetic acid may be used. In alkahne hydrolysis the boiling is continued until no more ammonia is evolved. In acid hydro-lysis 2-3 hours boiling is usually sufficient the reaction product is poured into water, and the organic acid is separated from any unchanged nitrile or from amide by means of sodium carbonate solution. The resulting acid is identified as detailed in Section IV,175. [Pg.805]

P-Cyanopyridine. Mix 25 g. of powdered nicotinamide with 30g. of phosphoric oxide in a 150 ml. distilling flask by shaking. Immerse the flask in an oil bath and arrange for distillation under a pressure of about 30 mm. Raise the temperature of the oil bath rapidly to 300°, then remove the oil bath and continue the heating with a free flame as long as a distillate is obtained. The nitrile crystallises on cooling to a snow-white solid. Redistil the solid at atmospheric pressure practically all of it passes over at 201° and crystallises completely on cooling. The yield of p-cyanopyridine, m.p. 49°, is 20 g. [Pg.850]

Analytical Procedures. Standard methods for analysis of food-grade adipic acid are described ia the Food Chemicals Codex (see Refs, ia Table 8). Classical methods are used for assay (titration), trace metals (As, heavy metals as Pb), and total ash. Water is determined by Kad-Fisher titration of a methanol solution of the acid. Determination of color ia methanol solution (APHA, Hazen equivalent, max. 10), as well as iron and other metals, are also described elsewhere (175). Other analyses frequendy are required for resia-grade acid. For example, hydrolyzable nitrogen (NH, amides, nitriles, etc) is determined by distillation of ammonia from an alkaline solution. Reducible nitrogen (nitrates and nitroorganics) may then be determined by adding DeVarda s alloy and continuing the distillation. Hydrocarbon oil contaminants may be determined by ir analysis of halocarbon extracts of alkaline solutions of the acid. [Pg.246]

A continuous process has been described (14) which can produce either the amide or the nitrile by adjusting the reaction conditions. Boric acid has been used as a catalyst in the amidation of fatty acid (15). Other catalysts employed include alumina (16), titanium, and 2inc alkoxides (17). The difficulty of complete reaction during synthesis has been explained by the formation of RCOOH NH RCOO , a stable intermediate acid ammonium salt (18). [Pg.183]

Nitrile Process. Fatty nitriles are readily prepared via batch, Hquid-phase, or continuous gas-phase processes from fatty acids and ammonia. Nitrile formation is carried out at an elevated temperature (usually >250° C) with catalyst. An ammonia soap which initially forms, readily dehydrates at temperatures above 150°C to form an amide. In the presence of catalyst, zinc (ZnO) for batch and bauxite for continuous processes, and temperatures >250° C, dehydration of the amide occurs to produce nitrile. Removal of water drives the reaction to completion. [Pg.220]

Fats, Oils, or Fatty Acids. The primary products produced direcdy from fats, oils, or fatty acids without a nitrile iatermediate are the quatemized amidoamines, imidazolines, and ethoxylated derivatives (Fig. 3). Reaction of fatty acids or tallow with various polyamines produces the iatermediate dialkylarnidoarnine. By controlling reaction conditions, dehydration can be continued until the imidazoline is produced. Quaternaries are produced from both amidoamines and imidazolines by reaction with methyl chloride or dimethyl sulfate. The amidoamines can also react with ethylene oxide (qv) to produce ethoxylated amidoamines which are then quaternized. [Pg.381]

Because nitrile rubber is an unsaturated copolymer it is sensitive to oxidative attack and addition of an antioxidant is necessary. The most common practice is to add an emulsion or dispersion of antioxidant or stabilizer to the latex before coagulation. This is sometimes done batchwise to the latex in the blend tank, and sometimes is added continuously to the latex as it is pumped toward further processing. PhenoHc, amine, and organic phosphite materials are used. Examples are di-Z fZ-butylcatechol, octylated diphenylamine, and tris(nonylphenyl) phosphite [26523-78-4]. All are meant to protect the product from oxidation during drying at elevated temperature and during storage until final use. Most mbber processors add additional antioxidant to their compounds when the NBR is mixed with fillers and curatives in order to extend the life of the final mbber part. [Pg.521]

The dipoles are shown interacting directly as would be expected. Nevertheless, it must be emphasized that behind the dipole-dipole interactions will be dispersive interactions from the random charge fluctuations that continuously take place on both molecules. In the example given above, the net molecular interaction will be a combination of both dispersive interactions from the fluctuating random charges and polar interactions from forces between the two dipoles. Examples of substances that contain permanent dipoles and can exhibit polar interactions with other molecules are alcohols, esters, ethers, amines, amides, nitriles, etc. [Pg.67]

Corrosion-inhibiting primers based on this technology have been in continuous service since they were first utilized with nitrile epoxies in the late 1960s. These inhibitors function by passivating the aluminum. In this process, water permeating the adhesive bondline carries a certain amount of inhibitor to the oxide surface. [Pg.439]

The ether is allowed to evaporate on the water-bath and th e nitrile is then hydrolysed by continuing to heat it on the water-bath with the addition of 4—5 times its volume of cone, hydrochloiic acid until crystals appear on the surface. Water is added and the hot liquid decanted and filteied from any oil. On cooling, the crystals are filtered, washed vvith a little cold ivaterand dried. A fuither quantity can be extiacted from the filtrate with ether. It may be recrystallised from benzene. Yield, 10—15 grms. [Pg.206]

Secondary Chlorides With a low-boiling chloride such as 2-chlorobutane, a stirred slurry of 30 g (0.61 mole) of sodium cyanide in 150 ml of dimethyl sulfoxide is heated to 90° with a heating mantle, and 0.5 mole of the chloride is slowly added over a period of 30 minutes. The temperature of the refluxing reaction mixture slowly increases as nitrile is formed. Refluxing continues as the temperature slowly rises to 150° after 3 hours reaction time. The flask is then cooled and the reaction mixture is worked up in the same way as for the primary nitriles. With 2-chlorooctane, the sodium cyanide-dimethyl sulfoxide slurry is heated to 130° and 0.5 mole of the chloride added. The reaction mixture is maintained at 135-145° for 1 hour, then cooled, and the product is isolated as above. Examples are given in Table 16.1. [Pg.140]

After chilling to -t-12°C, additional methanol (35 ml) and a concentrated aqueous ammoniurt hydroxide solution (1.4M) (100 ml) are added and stirring is continued for 2 hours at a temperature maintained at from -t-5° to -H5°C. The organic layer is separated and solvent is stripped from the aqueous layer at water aspirator pressure at a temperature below 40°C. The residue is extracted several times with chloroform and the chloroform extracts are combined with the separated oil. Chloroform is removed at water aspirator pressure at a temperature below 35°C to leave crude q-amino- -methylmercaptobutyronitrile (methionine nitrile) in 88% yield (68 g) as a clear, somewhat viscous oil. [Pg.977]

Nitrile rubber (NBR) was first commercialized by I.G. Farbindustry, Germany, in 1937, under the trade name of Buna N. Its excellent balance of properties confers it an important position in the elastomer series. Nitrile rubber, a copolymer of butadiene and acrylonitrile, is widely used as an oil-resistant rubber. The acrylonitrile content decides the ultimate properties of the elastomer. In spite of possessing a favorable combination of physical properties, there has been a continuous demand to improve the aging resistance of NBR due to the tougher requirements of industrial and automotive applications. [Pg.555]

Nitrile rubbers, including fiber-reinforced varieties, are used both as radial shaft-seal materials and as molded packing for reciprocating shafts. They have excellent resistance to a considerable range of chemicals, with the exception of strong acids and alkalis, and are at the same time compatible with petroleum-based lubricants. Their working temperature range is from —1°C to 107°C (30°F to 225°F) continuously and up to 150°C (302°F) intermittently. When used on hard shafts with a surface finish of, at most, 0.00038 mm root mean square (RMS), they have an excellent resistance to abrasion. [Pg.883]

Polyacrylic resins, which have similar chemical resistance to the nitriles, can be used for slightly higher temperature conditions, but because their abrasion resistance is not as good as that of the nitriles, they need continuous lubrication. [Pg.883]


See other pages where Nitriles continued is mentioned: [Pg.172]    [Pg.377]    [Pg.378]    [Pg.379]    [Pg.380]    [Pg.381]    [Pg.382]    [Pg.512]    [Pg.514]    [Pg.516]    [Pg.882]    [Pg.172]    [Pg.377]    [Pg.378]    [Pg.379]    [Pg.380]    [Pg.381]    [Pg.382]    [Pg.512]    [Pg.514]    [Pg.516]    [Pg.882]    [Pg.805]    [Pg.240]    [Pg.200]    [Pg.217]    [Pg.220]    [Pg.257]    [Pg.261]    [Pg.929]    [Pg.332]    [Pg.574]    [Pg.780]   


SEARCH



© 2024 chempedia.info