Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultimate properties

Secondly, the ultimate properties of polymers are of continuous interest. Ultimate properties are the properties of ideal, defect free, structures. So far, for polymer crystals the ultimate elastic modulus and the ultimate tensile strength have not been calculated at an appropriate level. In particular, convergence as a function of basis set size has not been demonstrated, and most calculations have been applied to a single isolated chain rather than a three-dimensional polymer crystal. Using the Car-Parrinello method, we have been able to achieve basis set convergence for the elastic modulus of a three-dimensional infinite polyethylene crystal. These results will also be fliscussed. [Pg.433]

The presence of spherulites or smaller crystallites is comparable to cross-linking and affects not only the moduli and compliances, but also the ultimate properties such as yield strength and ultimate elongation. [Pg.264]

The interface region in a composite is important in determining the ultimate properties of the composite. At the interface a discontinuity occurs in one or more material parameters such as elastic moduli, thermodynamic parameters such as chemical potential, and the coefficient of thermal expansion. The importance of the interface region in composites stems from two main reasons the interface occupies a large area in composites, and in general, the reinforcement and the matrix form a system that is not in thermodynamic equiUbhum. [Pg.198]

The pseudocross-links, generated by the hard-segment interactions, are reversed by heating or dissolution. Without the domain crystallinity, thermoplastic polyurethanes would lack elastic character and be more gum-like in nature. In view of the outlined morphology, it is not surprising that many products develop their ultimate properties only on curing at elevated temperature, which allows the soft- and hard-phase segments to separate. [Pg.344]

The raw materials used ia the production of manufactured carbon and graphite largely control the ultimate properties and practical appHcations of the final product. This dependence is related to the chemical and physical nature of the carbonization and graphitization processes. [Pg.497]

New copolymers with higher alpha olefins Expect superior ultimate properties Tough films, flexible moulding... [Pg.160]

The type of manufacturing process, reaction conditions, and catalyst are the controlling factors for the molecular structure of the polymers [4-8]. The molecular features govern the melt processability and microstructure of the solids. The formation of the microstructure is also affected by the melt-processing conditions set for shaping the polymeric resin [9]. The ultimate properties are, thus, directly related to the microstructural features of the polymeric solid. [Pg.277]

The primary molecular parameters affecting the processing and ultimate properties of PEs are type, content, and distribution of chain branching, molecular weight (MW), and molecular weight distribution (MWD). [Pg.277]

The molecular structure and properties of polyolefins have been explained by several workers in the past [10-14]. This chapter deals with the primary molecular parameters and their effect on processability and ultimate properties of PEs. Since molecular parameters are closely interrelated, it is not possible to discuss one without referring to the other. Hence, in the section relating to the effect of chain branching, reference has also been made to MW and MWD and vice versa. [Pg.278]

According to the end use application, PEs are processed by various techniques, which include injection moulding, blow moulding, rotomoulding, and film extrusion. However, since the bulk of the processed material is used as film in the area of packaging, the discussion in this chapter focuses mainly on processing behavior and the ultimate properties of tubular blown film. [Pg.278]

Nitrile rubber (NBR) was first commercialized by I.G. Farbindustry, Germany, in 1937, under the trade name of Buna N. Its excellent balance of properties confers it an important position in the elastomer series. Nitrile rubber, a copolymer of butadiene and acrylonitrile, is widely used as an oil-resistant rubber. The acrylonitrile content decides the ultimate properties of the elastomer. In spite of possessing a favorable combination of physical properties, there has been a continuous demand to improve the aging resistance of NBR due to the tougher requirements of industrial and automotive applications. [Pg.555]

It is common that mechanochemical degradation involves scission of the macromolecule, so one basic question would be to inquire about the level of stress necessary to separate two chemical moieties which have been attached by a covalent bond. Besides the academic interest, the breaking strength of a covalent bond is associated with the ultimate properties of engineering materials and has attracted considerable attention since the beginnings of quantum chemistry. [Pg.106]

Broutman and McGarry [98] examined the effects of crosslinking on toughness as early as 1965. Bell [99] observed a threefold increase in notched impact strength as the molecular mass between crosslinks was increased. Schmid et al. [100] and Lohse et al. [101] pointed out the dominating effect of molecular strand length on the ultimate properties and the toughness of crosslinked polymers. Later, Batzer et al. [46], Schmid [44], and Fischer et al. [45] compared the behavior of various networks composed of epoxy resins. [Pg.347]

Recent work has focused on a variety of thermoplastic elastomers and modified thermoplastic polyimides based on the aminopropyl end functionality present in suitably equilibrated polydimethylsiloxanes. Characteristic of these are the urea linked materials described in references 22-25. The chemistry is summarized in Scheme 7. A characteristic stress-strain curve and dynamic mechanical behavior for the urea linked systems in provided in Figures 3 and 4. It was of interest to note that the ultimate properties of the soluble, processible, urea linked copolymers were equivalent to some of the best silica reinforced, chemically crosslinked, silicone rubber... [Pg.186]

Strain-induced crystallization would presumably further improve the ultimate properties of a bimodal network. It would therefore obviously be of considerable importance to study the effect of chain length distribution on the ultimate properties of bimodal networks prepared from chains having melting points well above the very low value characteristic of PDMS. Studies of this type are being carried out on bimodal networks of polyethylene oxide) (55), poly(caprolactone) (55), and polyisobutylene (56). [Pg.363]

The properties of PHAs are dependent on their monomer composition and therefore it is of great interest that recent research has revealed that, in addition to PHB, a large variety of PHAs can be synthesized microbially. The monomer composition of PHAs depends on the nature of the carbon source and microorganism used. PHB is a typical highly crystalline thermoplastic whereas medium chain length PHAs are elastomers with low melting points and a relatively lower degree of crystallinity. By (chemical) modification of the PHAs, the ultimate properties of the materials can be adjusted even further, when necessary. [Pg.260]


See other pages where Ultimate properties is mentioned: [Pg.437]    [Pg.235]    [Pg.47]    [Pg.50]    [Pg.374]    [Pg.119]    [Pg.329]    [Pg.285]    [Pg.285]    [Pg.156]    [Pg.12]    [Pg.108]    [Pg.337]    [Pg.243]    [Pg.20]    [Pg.126]    [Pg.311]    [Pg.388]    [Pg.940]    [Pg.959]    [Pg.410]    [Pg.352]    [Pg.360]    [Pg.361]    [Pg.365]    [Pg.136]    [Pg.349]    [Pg.350]    [Pg.350]    [Pg.353]    [Pg.358]    [Pg.363]    [Pg.140]   
See also in sourсe #XX -- [ Pg.51 ]

See also in sourсe #XX -- [ Pg.230 ]

See also in sourсe #XX -- [ Pg.611 ]

See also in sourсe #XX -- [ Pg.37 , Pg.38 , Pg.39 , Pg.40 , Pg.41 , Pg.42 , Pg.43 ]

See also in sourсe #XX -- [ Pg.47 ]

See also in sourсe #XX -- [ Pg.415 ]




SEARCH



Copolymers, ultimate properties

Mechanical properties ultimate

Mechanical properties ultimate property

Ultimate Properties and Other Practical Aspects of Behavior

Ultimate electrical properties

Ultimate tensile properties

© 2024 chempedia.info