Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Niobium dissolved

Both tantalum and niobium dissolve in HF, but relatively slowly at first. The interaction is shown schematically in Equation (1), Me = Ta or Nb ... [Pg.12]

As was discussed in Chapter 4, tantalum and niobium dissolve in fluorine-containing solutions in the form of complex fluoride ions of two types, namely TaF727TaF6" and NbOF527NbF6 [61, 155, 171, 291]. The equilibrium between the complexes depends on the acidity of the solution and can be represented schematically as shown in Equations (139) and (140) for tantalum and niobium, respectively ... [Pg.274]

The metal reacts with chlorine at 300°C forming niobium pentachloride, NbCls. It reacts with hot concentrated hydrochloric acid, also forming the pentachloride. Niobium dissolves in hot concentrated sulfuric acid at 170°C. Fused alkalies such as caustic soda and caustic potash attack niobium, embrittling the metal. [Pg.631]

A method of separation which avoids the preparation of the double fluorides consists in fusing the mixed niobic and t an tali c acids with sodium carbonate and nitrate, the product is digested with warm water and a current of carbon dioxide is passed through the solution. It is claimed that only tantalic acid is precipitated.5 This process has, however, been the subject of adverse criticism.6 Partial separation of niobium from tantalum can be effected by warming the mixed, freshly precipitated, hydrated oxides with a mixture of hydrogen peroxide and hydrochloric acid the niobium dissolves readily, while the tantalum dissolves only sparingly.7... [Pg.129]

Opa.nte. There are two methods used at various plants in Russia for loparite concentrate processing (12). The chlorination technique is carried out using gaseous chlorine at 800°C in the presence of carbon. The volatile chlorides are then separated from the calcium—sodium—rare-earth fused chloride, and the resultant cake dissolved in water. Alternatively, sulfuric acid digestion may be carried out using 85% sulfuric acid at 150—200°C in the presence of ammonium sulfate. The ensuing product is leached with water, while the double sulfates of the rare earths remain in the residue. The titanium, tantalum, and niobium sulfates transfer into the solution. The residue is converted to rare-earth carbonate, and then dissolved into nitric acid. [Pg.543]

The reaction of finely ground ores and an excess of carbon at high temperatures produces a mixture of metal carbides. The reaction of pyrochlore and carbon starts at 950°C and proceeds vigorously. After being heated to 1800—2000°C, the cooled friable mixture is acid-leached leaving an insoluble residue of carbides of niobium, tantalum, and titanium. These may be dissolved in HF or may be chlorinated or burned to oxides for further processing. [Pg.22]

Another solvent extraction scheme uses the mixed anhydrous chlorides from a chlorination process as the feed (28). The chlorides, which are mostly of niobium, tantalum, and iron, are dissolved in an organic phase and are extracted with 12 Ai hydrochloric acid. The best separation occurs from a mixture of MIBK and diisobutyl ketone (DIBK). The tantalum transfers to the hydrochloric acid leaving the niobium and iron, the DIBK enhancing the separation factor in the organic phase. Niobium and iron are stripped with hot 14—20 wt % H2SO4 which is boiled to precipitate niobic acid, leaving the iron in solution. [Pg.23]

Fused-salt electrolysis of K2NbFy is not an economically feasible process because of the low current efficiency (31). However, electrowinning has been used to obtain niobium from molten alkaU haUde electrolytes (32). The oxide is dissolved in molten alkaU haUde and is deposited in a molten metal cathode, either cadmium or zinc. The reaction is carried out in a ceramic or glass container using a carbon anode the niobium alloys with the cathode metal, from which it is freed by vacuum distillation, and the niobium powder is left behind. [Pg.23]

Borides are inert toward nonoxidizing acids however, a few, such as Be2B and MgB2, react with aqueous acids to form boron hydrides. Most borides dissolve in oxidizing acids such as nitric or hot sulfuric acid and they ate also readily attacked by hot alkaline salt melts or fused alkaU peroxides, forming the mote stable borates. In dry air, where a protective oxide film can be preserved, borides ate relatively resistant to oxidation. For example, the borides of vanadium, niobium, tantalum, molybdenum, and tungsten do not oxidize appreciably in air up to temperatures of 1000—1200°C. Zirconium and titanium borides ate fairly resistant up to 1400°C. Engineering and other properties of refractory metal borides have been summarized (1). [Pg.218]

Niobium and tantalum also form various oxide phases but they are not so extensive or well characterized as those of vanadium. Their pentoxides are relatively much more stable and difficult to reduce. As they are attacked by cone HF and will dissolve in fused alkali, they may perhaps... [Pg.982]

A somewhat similar phenomenon is knife-line attack which may be observed after welding titanium or niobium stabilised austenitic stainless steels. In this case there is a very narrow band of severe intergranular attack along the interface between the parent metal and the fusion zone. During welding, the parent metal immediately adjacent to the fusion zone is heated to just below the melting point and both chromium carbides and niobium or titanium carbides dissolve completely. On cooling rapidly, the conditions are such that when relatively thin sections are welded, neither chromium carbide nor niobium or titanium carbide have time to precipitate. If the weld is now... [Pg.44]

Uranium Short-term tests indicate that the practical upper limit for niobium as a container material for uranium is about 1 400°C . Niobium is dissolved in a uranium-bismuth alloy in less than lOOh at a temperature of 800°C". Uranium eutectics with iron, manganese or nickel, corroded niobium at 800°C and 1 000°C It is significantly attacked by uranium-chromium at 1 000°C . [Pg.858]

Nevertheless, tantalum and niobium refining technology was, and remains, a part of fluorine chemistry, since its main processes are related to the chemistry of tantalum and niobium fluorides in solid, dissolved and molten states. [Pg.8]

Precipitation of fluoride compounds from solutions of hydrofluoric acid, HF, is performed by the addition of certain soluble compounds to solutions containing niobium or tantalum. Initial solutions can be prepared by dissolving metals or oxides of tantalum or niobium in HF solution. Naturally, a higher concentration of HF leads to a higher dissolution rate, but it is recommended to use a commercial 40-48% HF acid. A 70% HF solution is also available, but it is usually heavily contaminated by H2SiF6 and other impurities, and the handling of such solutions is extremely dangerous. [Pg.12]

Tantalum and niobium oxides dissolve very slowly in HF solutions. Thus, it is recommended to use a high concentration of HF or a mixture of HF and H2SO4 at a temperature of about 70-90°C. The best precursors for the preparation of fluoride solutions are hydroxides. Both tantalum hydroxide, Ta205 nH20, and niobium hydroxide, M Os-nHjO, dissolve well, even in diluted HF solutions. [Pg.13]

Raman spectra of fluoride solutions containing niobium were investigated by Keller [171]. Solutions were prepared by dissolving niobium fluoride compounds in solutions of hydrofluoride acid, HF, of different concentrations. [Pg.125]

An initial solution was prepared by dissolving metallic niobium powder in 40% hydrofluoric acid. The dissolution was performed at elevated temperature with the addition of a small amount of nitric acid, HN03, to accelerate the process. The completeness of niobium oxidation was verified by UV absorption spectroscopy [21]. The prepared solution was evaporated to obtain a small amount of precipitate, which was separated from the solution by filtration. A saturated solution, containing Nb - 7.01 mol/1, HF - 42.63 mol/1, and corresponding to a molar ratio F Nb = 6.08, was prepared by the above method. The density of the solution at ambient temperature was p = 2.0 g/cc. Concentrations needed for the measurements were obtained by diluting the saturated solution with water or hydrofluoric acid. [Pg.127]

Preparation of the solutions was similar to that of niobium-containing solutions, i.e. by dissolving tantalum metal powder in hydrofluoric acid, HF, at a concentration of about 40% weight. [Pg.130]

For a long period of time, molten salts containing niobium and tantalum were widely used for the production by electrolysis of metals and alloys. This situation initiated intensive investigations into the electrochemical processes that take place in molten fluorides containing dissolved tantalum and niobium in the form of complex fluoride compounds. Well-developed sodium reduction processes currently used are also based on molten salt media. In addition, molten salts are a suitable reagent media for the synthesis of various compounds, in the form of both single crystals and powdered material. The mechanisms of the chemical interactions and the compositions of the compounds depend on the structure of the melt. [Pg.135]

The fluorination process aims to decompose the material and convert tantalum and niobium oxides into complex fluoride compounds to be dissolved in aqueous solutions. The correct and successful performance of the decomposition process requires a clear understanding of the oxygen-fluorine substitution mechanism of the interaction itself. [Pg.253]

Results of the measurements were analyzed in the form of the initial dissolution rate (R ), which is the first derivative of the dissolution fraction of a said element, in this case, niobium or tantalum. The dissolution fraction is defined as the molar ratio between the amount of metal dissolved and its total concentration in the said sample, in this case, columbite or tantalite. Table 60 presents some relevant values of the initial dissolution rate taken from [451]. [Pg.257]

Table 60. Initial dissolution rates (RJ of niobium and tantalum dissolved from columbite or tantalite in different solutions, at 80% . (Compositions of solutions are given in mol/l)(qfter Majima et al. [415]). Table 60. Initial dissolution rates (RJ of niobium and tantalum dissolved from columbite or tantalite in different solutions, at 80% . (Compositions of solutions are given in mol/l)(qfter Majima et al. [415]).
Hydrofluoric acid, at relatively high concentrations and at elevated temperatures, dissolves columbite-tantalite concentrates at a reasonable rate. The dissolution process is based on the fluorination of tantalum, niobium and other metal oxides and their conversion into soluble complex fluoride acids yielding complex fluoride ions. [Pg.262]

The optimal temperature range for the interaction was found to be 150-230°C. The cake resulting from the fluorination process was also successfully leached with water, dissolving ammonium oxyfluoroniobate, (NH4)3NbOF6. The solution was separated from the precipitate of lithium fluoride. The main parameters of the solution were a niobium concentration of about 75 g/1 Nb205, pH = 3—4. [Pg.264]

The cake is leached with water in order to dissolve tantalum and niobium (and other related compounds) in the form of fluoride salts of ammonium. Ammonium fluoroferrate and fluoromanganate are unstable in aqueous solutions of low acidity. It is assumed that iron and manganese will form precipitates of insoluble fluorides or oxyfluorides that can be separated from the solution by filtration. [Pg.265]

Another way of applying the selective extraction method directly on the initial solution is to produce a solution of low acidity. This can be achieved by using the hydrofluoride method for fluorination and decomposition of raw material. As was discussed in Paragraph 8.2.2, the raw material is fluorinated by molten ammonium hydrofluoride yielding soluble complex fluorides of ammonium and tantalum or niobium. The cake obtained following fluorination is dissolved in water, leading to a solution of low initial acidity that is related for the most part to the partial hydrolysis of complex fluoride compounds. The acidity of the solution is first adjusted to ensure selective tantalum extraction. In the second step, the acidity of the raffinate is increased to provide the necessary conditions for niobium extraction. [Pg.279]

The precipitated precursor can be dissolved and re-crystallized from fluorine-free solutions. This provides excellent conditions for deep purification of the material and reduction of problematic impurities such as titanium, fluorine, etc. Peroxometalates decompose at relatively low temperatures forming tantalum or niobium oxides containing small amount of absorbed water. The absorbed water separation is achieved by further thermal treatment - drying and calcination - of the product ... [Pg.308]

Niobium undergoes a two-stage electrochemical reduction from potassium heptafluoroniobate, K2NbF7, that is dissolved in fluoride-chloride melts [550 -553] ... [Pg.323]


See other pages where Niobium dissolved is mentioned: [Pg.347]    [Pg.348]    [Pg.347]    [Pg.348]    [Pg.275]    [Pg.347]    [Pg.15]    [Pg.20]    [Pg.25]    [Pg.25]    [Pg.27]    [Pg.27]    [Pg.386]    [Pg.326]    [Pg.121]    [Pg.991]    [Pg.44]    [Pg.1244]    [Pg.5]    [Pg.6]    [Pg.7]    [Pg.126]    [Pg.257]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



© 2024 chempedia.info