Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel catalyst, steam reforming methane

Diffraction patterns from a nickel-alumina steam reforming—methanation catalyst and a sample of sintered nickel recorded on a LIN AC source... [Pg.66]

Higher Hydrocarbons. - A number of papers describing the steam reforming of higher hydrocarbons are particularly concerned with the subject of carbon deposition on the catalysts. The subject of carbon deposition on nickel catalysts is considered to be somewhat outside the subject of this review, especially as the subject is covered by two excellent recent discussions of papers on carbon deposition and coking during steam reforming, methanation, and other reactions.202 203... [Pg.45]

The feed is desulfurized and mixed with process steam before entering the steam reformer. This steam reformer is a top-fired box type furnace with a cold outlet header system developed by Krupp Uhde. The reforming reaction occurs over a nickel catalyst. Outlet reformed gas is a mixture of H2, CO, C02 and residual methane. It... [Pg.69]

One route to syngas is by steam-reforming methane, over a nickel catalyst at high temperature (Equation 3) ... [Pg.117]

Steam reforming was the primary reaction over these nickel catalysts. The presence of hydrocarbons (G2 to G5) which would indicate cracking reactions occurred to the extent of less than 10% in the reaction products. The presence of methane, which would indicate partial reforming, did not exceed 5% in the reaction products. There does not appear to be any significant difference in product selectivity for the n-hexane steam reforming reaction over nickel on the 2 quite different supports—zeolite vs. alumina. Carbonaceous residues accumulated in the case of all the nickel catalysts where reforming activity was sustained and the carbon deposition on the zeolite catalysts compared favorably with G56. [Pg.429]

Steam Reforming. When relatively light feedstocks, eg, naphthas having ca 180°C end boiling point and limited aromatic content, are available, high nickel content catalysts can be used to simultaneously conduct a variety of near-autothermic reactions. This results in the essentiaHy complete conversions of the feedstocks to methane ... [Pg.74]

Methane. The largest use of methane is for synthesis gas, a mixture of hydrogen and carbon monoxide. Synthesis gas, in turn, is the primary feed for the production of ammonia (qv) and methanol (qv). Synthesis gas is produced by steam reforming of methane over a nickel catalyst. [Pg.400]

Nickel catalysts are also used for steam methane reforming. Moreover, nickel catalysts containing potassium to inhibit coke formation from feedstocks such as LPG and naphtha have received wide appHcation. [Pg.418]

Na.tura.1 Ga.s Reforma.tion. In the United States, most hydrogen is presently produced by natural gas reformation or methane—steam reforming. In this process, methane mixed with steam is typically passed over a nickel oxide catalyst at an elevated temperature. The reforming reaction is... [Pg.453]

In the catalytic steam reforming of natural gas (see Fig. 2), the hydrocarbon stream, principally methane, is desulfurized and, through the use of superheated steam (qv), contacts a nickel catalyst in the primary reformer at ca 3.04 MPa (30 atm) pressure and 800°C to convert methane to H2. [Pg.83]

Steam Reforming Processes. In the steam reforming process, light hydrocarbon feedstocks (qv), such as natural gas, Hquefied petroleum gas, and naphtha, or in some cases heavier distillate oils are purified of sulfur compounds (see Sulfurremoval and recovery). These then react with steam in the presence of a nickel-containing catalyst to produce a mixture of hydrogen, methane, and carbon oxides. Essentially total decomposition of compounds containing more than one carbon atom per molecule is obtained (see Ammonia Hydrogen Petroleum). [Pg.368]

The steam reformer process involves the reaction of methane and high temperature steam in the presence of a nickel catalyst. The reactions are... [Pg.416]

Additionally, nickel is a well established steam-reforming catalyst. An ideal SOFC system operated on natural gas applies internal steam reforming, i.e., the reforming of the methane takes place in the anode compartment of the stack. This type of system is favored for system simplicity and costs (no external reformer), and for system efficiency because the heat generated by the cell reaction is directly used by the reform reaction, and hence the cooling requirements of the stack (by air at the cathode side) are significantly reduced. [Pg.329]

The two predominant methods oPmaking synthesis gas are steam reforming and partial oxidation. Both are quite simple. The steam reforming method involves passing methane or naphtha plus steam over a nickel catalyst. The reaction, if methane is the feedstock, is ... [Pg.174]

Steam, at high temperatures (975-1375 K) is mixed with methane gas in a reactor with a Ni-based catalyst at pressures of 3-25 bar to yield carbon monoxide (CO) and hydrogen (H ). Steam reforming is the process by which methane and other hydrocarbons in natural gas are converted into hydrogen and carbon monoxide by reaction with steam over a nickel catalyst on a ceramic support. The hydrogen and carbon monoxide are used as initial material for other industrial processes. [Pg.198]

Ce02-supported noble-metal catalysts such as Pt, Pd and Rh are of interest because of their importance in the so-called three-way converter catalysts (TWC), designed to reduce emissions of CO, NOx and uncombusted hydrocarbons in the environment and to purify vehicle-exhaust emissions. Such catalysts are also of current interest in steam reforming of methane and other hydrocarbons. Conventional practical catalysts for steam reforming consist of nickel supported on a ceramic carrier with a low surface area and are used at high temperatures of 900 C. This catalyst suffers from coke formation which suppresses the intrinsic catalyst activity. Promoters such as Mo are added to suppress coke formation. Recently, Inui etal(l991) have developed a novel Ni-based composite... [Pg.214]

Methane is the principal gas found with coal and oil deposits and is a major fuel and chemical used is the petrochemical industry. Slightly less than 20% of the worlds energy needs are supplied by natural gas. The United States get about 30% of its energy needs from natural gas. Methane can be synthesized industrially through several processes such as the Sabatier method, Fischer Tropsch process, and steam reforming. The Sabatier process, named for Frenchman Paul Sabatier (1854—1941), the 1912 Nobel Prize winner in chemistry from France, involves the reaction of carbon dioxide and hydrogen with a nickel or ruthenium metal catalyst C02 + 4H2 —> CH4 + 2H20. [Pg.172]

The same catalyst compositions used in the more important methane steam reforming [Eq. (3.1), forward reaction], may be used in methanation, too.222 All Group VIE metals, and molybdenum and silver exhibit methanation activity. Ruthenium is the most active but not very selective since it is a good Fischer-Tropsch catalyst as well. The most widely used metal is nickel usually supported on alumina or in the form of alloys272,276,277 operating in the temperature range of 300-400°C. [Pg.108]

It includes the steam reforming of methane over a nickel catalyst to synthesis gas followed by the copper-catalyzed transformation of the latter to methanol (see Section 3.5.1). Finally, formaldehyde is produced by oxidative dehydrogenation of methanol. [Pg.430]

Supported nickel catalysts catalyze steam-methane reforming and the concurrent shift reaction. The catalyst contains 15-25 wt% nickel oxide on a mineral carrier. Carrier materials are alumina, aluminosilicates, cement, and magnesia. Before start-up, nickel oxide must be reduced to metallic nickel with hydrogen but also with natural gas or even with the feed gas itself. [Pg.408]

Find et al. [42] developed a nickel-based catalyst for methane steam reforming. As material for the micro structured plates, AluchromY steel, which is an FeCrAlloy (see Section 2.10.7) was applied. This steel forms a thin layer of alumina on its surface, which is less than 1 pm thick. This layer was used as an adhesion interface for the catalyst. I ts formation was achieved by thermal treatment of micro structured plates for 4 h at 1 000 °C. [Pg.308]


See other pages where Nickel catalyst, steam reforming methane is mentioned: [Pg.107]    [Pg.190]    [Pg.170]    [Pg.495]    [Pg.51]    [Pg.14]    [Pg.259]    [Pg.180]    [Pg.457]    [Pg.459]    [Pg.173]    [Pg.142]    [Pg.15]    [Pg.280]    [Pg.130]    [Pg.209]    [Pg.246]    [Pg.135]    [Pg.292]    [Pg.383]    [Pg.49]    [Pg.73]    [Pg.89]    [Pg.832]    [Pg.83]    [Pg.84]    [Pg.359]    [Pg.372]   


SEARCH



Catalyst, reformer

Catalysts methane

Methanation Catalyst

Nickel catalyst, methanation

Nickel catalyst, steam reforming

Nickel methane

Reforming catalyst

Reforming methane

Steam methane reformation

Steam methane reformer

Steam reformation

Steam reforming

Steam reforming catalysts

Steam-methane

Steaming methane reforming

© 2024 chempedia.info