Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel carbonyl monoxide

Acetylene-Based Routes. Walter Reppe, the father of modem acetylene chemistry, discovered the reaction of nickel carbonyl with acetylene and water or alcohols to give acryUc acid or esters (75,76). This discovery led to several processes which have been in commercial use. The original Reppe reaction requires a stoichiometric ratio of nickel carbonyl to acetylene. The Rohm and Haas modified or semicatalytic process provides 60—80% of the carbon monoxide from a separate carbon monoxide feed and the remainder from nickel carbonyl (77—78). The reactions for the synthesis of ethyl acrylate are... [Pg.155]

The stoichiometric and the catalytic reactions occur simultaneously, but the catalytic reaction predominates. The process is started with stoichiometric amounts, but afterward, carbon monoxide, acetylene, and excess alcohol give most of the acrylate ester by the catalytic reaction. The nickel chloride is recovered and recycled to the nickel carbonyl synthesis step. The main by-product is ethyl propionate, which is difficult to separate from ethyl acrylate. However, by proper control of the feeds and reaction conditions, it is possible to keep the ethyl propionate content below 1%. Even so, this is significantly higher than the propionate content of the esters from the propylene oxidation route. [Pg.155]

The reaction is initiated with nickel carbonyl. The feeds are adjusted to give the bulk of the carbonyl from carbon monoxide. The reaction takes place continuously in an agitated reactor with a Hquid recirculation loop. The reaction is mn at about atmospheric pressure and at about 40°C with an acetylene carbon monoxide mole ratio of 1.1 1 in the presence of 20% excess alcohol. The reactor effluent is washed with nickel chloride brine to remove excess alcohol and nickel salts and the brine—alcohol mixture is stripped to recover alcohol for recycle. The stripped brine is again used as extractant, but with a bleed stream returned to the nickel carbonyl conversion unit. The neutralized cmde monomer is purified by a series of continuous, low pressure distillations. [Pg.155]

Nickel Carbonyl The extremely toxic gas nickel carbonyl can be detected at 0.01 ppb by measuring its chemiluminescent reaction with ozone in the presence of carbon monoxide. The reaction produces excited nickel(II) oxide by a chain process which generates many photons from each pollutant molecule to permit high sensitivity (315). [Pg.276]

Ca.rbonylProcess. Cmde nickel also can be refined to very pure nickel by the carbonyl process. The cmde nickel and carbon monoxide (qv) react at ca 100°C to form nickel carbonyl [13463-39-3] Ni(CO)4, which upon further heating to ca 200—300°C, decomposes to nickel metal and carbon monoxide. The process is highly selective because, under the operating conditions of temperature and atmospheric pressure, carbonyls of other elements that are present, eg, iron and cobalt, are not readily formed. [Pg.3]

In the carbonyl process, the Hquid is purified, vaporized, and rapidly heated to ca 300°C which results in the decomposition of the vapor to carbon monoxide and a fine high purity nickel powder of particle sizes <10 fim. This product is useflil for powder metallurgical appHcations (see Metallurgy, powder). Nickel carbonyl can also be decomposed in the presence of nickel powder, upon which the nickel is deposited. This process yields nickel pellets, typically about 0.8 cm dia and of >99.9 wt% purity. [Pg.3]

Nickel [7440-02-0] Ni, recognized as an element as early as 1754 (1), was not isolated until 1820 (2). It was mined from arsenic sulfide mineral deposits (3) and first used in an alloy called German Silver (4). Soon after, nickel was used as an anode in solutions of nickel sulfate [7786-81 A] NiSO, and nickel chloride [7718-54-9] NiCl, to electroplate jewelry. Nickel carbonyl [13463-39-3] Ni(C02)4, was discovered in 1890 (see Carbonyls). This material, distilled as a hquid, decomposes into carbon monoxide and pure nickel powder, a method used in nickel refining (5) (see Nickel and nickel alloys). [Pg.9]

Nickel sulfate also is made by the reaction of black nickel oxide and hot dilute sulfuric acid, or of dilute sulfuric acid and nickel carbonate. The reaction of nickel oxide and sulfuric acid has been studied and a reaction induction temperature of 49°C deterrnined (39). High purity nickel sulfate is made from the reaction of nickel carbonyl, sulfur dioxide, and oxygen in the gas phase at 100°C (40). Another method for the continuous manufacture of nickel sulfate is the gas-phase reaction of nickel carbonyl and nitric acid, recovering the soHd product in sulfuric acid, and continuously removing the soHd nickel sulfate from the acid mixture (41). In this last method, nickel carbonyl and sulfuric acid are fed into a closed-loop reactor. Nickel sulfate and carbon monoxide are produced the CO is thus recycled to form nickel carbonyl. [Pg.10]

Ma.nufa.cture. Nickel carbonyl can be prepared by the direct combination of carbon monoxide and metallic nickel (77). The presence of sulfur, the surface area, and the surface activity of the nickel affect the formation of nickel carbonyl (78). The thermodynamics of formation and reaction are documented (79). Two commercial processes are used for large-scale production (80). An atmospheric method, whereby carbon monoxide is passed over nickel sulfide and freshly reduced nickel metal, is used in the United Kingdom to produce pure nickel carbonyl (81). The second method, used in Canada, involves high pressure CO in the formation of iron and nickel carbonyls the two are separated by distillation (81). Very high pressure CO is required for the formation of cobalt carbonyl and a method has been described where the mixed carbonyls are scmbbed with ammonia or an amine and the cobalt is extracted as the ammine carbonyl (82). A discontinued commercial process in the United States involved the reaction of carbon monoxide with nickel sulfate solution. [Pg.12]

The reaction is carried out in the Hquid phase at 373—463 K and 3 MPa (30 atm) of carbon monoxide pressure using nickel salt catalyst, or at 313 K and 0.1 MPa (1 atm) using nickel carbonyl as both the catalyst and the source of carbon monoxide. Either acryHc acid or methyl acrylate may be produced directly, depending on whether water or methanol is used as solvent (41). New technology for acryHc acid production uses direct propjdene oxidation rather than acetylene carbonylation because of the high cost of acetjdene. This new process has completely replaced the old in the United States (see... [Pg.51]

The toxic symptoms from inhalation of nickel carbonyl are beUeved to be caused by both nickel metal and carbon monoxide. In many acute cases the symptoms ate headache, di22iQess, nausea, vomiting, fever, and difficulty in breathing. If exposure is continued, unconsciousness follows with subsequent damage to vital organs and death. Iron pentacarbonyl produces symptoms similar to nickel carbonyl but is considered less toxic than nickel carbonyl. [Pg.71]

Some catalysts are ha2ardous materials, or they react to form ha2ardous substances. For example, catalysts used for hydrogenation of carbon monoxide form volatile metal carbonyl compounds such as nickel carbonyl, which are highly toxic. Many catalysts contain heavy metals and other ha2ardous components, and environmentally safe disposal has become an increasing concern and expense. [Pg.174]

The Reppe process for manufacture of acrylic esters uses acetylene and carbon monoxide, with a nickel carbonyl catalyst having high acute and longterm toxicity, to react with an alcohol to make the corresponding acrylic ester ... [Pg.37]

Kohlenozyd, n, carbon monoxide, -eisen, n. iron carbonyl, -gas, n. carbon monoxide gas. -hamoglobin, n. compound of carbon monoxide with hemoglobin, -kalium, n. potassium carboxide, potassium hexacar-bonyl. -knallgas, n, explosive mixture of carbon monoxide and oxygen, -nickel, n. nickel carbonyl. [Pg.251]

When acid catalysts are employed, in the absence of nickel carbonyl, the mechanism involves initial attack by a proton, followed by attack of the resulting carbocation on carbon monoxide to give an acyl cation, which, with water, gives the product ... [Pg.1036]

When dicobalt octacarbonyl, [Co(CO)4]2, is the catalyst, the species that actually adds to the double bond is tricarbonylhydrocobalt, HCo(CO)3. Carbonylation, RCo(CO)3- -CO—>RCo(CO)4, takes place, followed by a rearrangement and a reduction of the C—Co bond, similar to steps 4 and 5 of the nickel carbonyl mechanism shown in 15-30. The reducing agent in the reduction step is tetra-carbonylhydrocobalt HCo(CO)4, ° or, under some conditions, H2. When HCo(CO)4 was the agent used to hydroformylate styrene, the observation of CIDNP indicated that the mechanism is different, and involves free radicals. Alcohols can be obtained by allowing the reduction to continue after all the carbon monoxide is... [Pg.1037]

A solution of 10.5 g. (0.046 mol) of freshly distilled bis(tri-fluoromethyl)-l,2-dithiete (Note 2) in 200 ml. of n-pentane is cooled to —10° in a 1-1. round-bottomed flask equipped with an efficient reflux condenser and protected from moist air by a dry nitrogen blanket. A solution of 3.0 ml. (0.023 mol) of nickel carbonyl dissolved in 100 ml. of w-pentane is added down the condenser in one portion to this solution. The mixture is swirled to mix. An intense blue-violet color develops in about 15 to 20 seconds and after 1 to 2 minutes, vigorous evolution of carbon monoxide occurs. This evolution subsides in 10 minutes and the deep violet solution is allowed to warm to 0° during 2 hours to ensure complete reaction. Most of the pentane is removed by distillation at atmospheric pressure, the remaining 50 to 60 ml. is removed in vacuo (0.1 mm.), and the resultant crystalline mass is evacuated (0.1 mm.) at 50° for 4 hours. The crude product consists of shiny black-purple needles and weighs 11.8 g. (98%). Recrystallization from dry benzene (Note 3) gives shiny black crystals, m.p. 134 to 135° (sealed tube). The complex is air-stable but should be kept out of contact with moist air. [Pg.27]

A 1,3-oxathiolane derivative (100) is formed when 2-mercaptoethanol is carbonylated by nickel carbonyl in pyridine (Scheme 118).181 It is probable that the mechanism involves carbonyl insertion into the Ni—S bond of intermediate thiolatonickel complexes and it is significant that compounds in this category (cf. 101,102) can be transformed into the cyclic thiocarbonate by treatment with carbon monoxide (Scheme 118).181... [Pg.372]

Lee [524] described a method for the determination of nanogram or sub-nan ogram amounts of nickel in seawater. Dissolved nickel is reduced by sodium borohydride to its elemental form, which combines with carbon monoxide to form nickel carbonyl. The nickel carbonyl is stripped from solution by a helium-carbon monoxide mixed gas stream, collected in a liquid nitrogen trap, and atomised in a quartz tube burner of an atomic absorption spectrophotometer. The sensitivity of the method is 0.05 ng of nickel. The precision for 3 ng nickel is about 4%. No interference by other elements is encountered in this technique. [Pg.208]

Nickel carbonyl (Ni(CO)4) is a volatile, colorless liquid readily formed when nickel reacts with carbon monoxide it boils at 43°C and decomposes at more than 50°C. This compound is unstable in air and is usually not measurable after 30 min (NRCC 1981 Norseth 1986 USPHS 1993). The intact molecule is absorbed by the lung (USEPA 1980) and is insoluble in water but soluble in most organic solvents (WHO 1991). [Pg.449]

The phase-transfer catalysed reaction of nickel tetracarbonyl with sodium hydroxide under carbon monoxide produces the nickel carbonyl dianions, Ni,(CO) 2- and Ni6(CO)162, which convert allyl chloride into a mixture of but-3-enoic and but-2-enoic acids [18]. However, in view of the high toxicity of the volatile nickel tetracarbonyl, the use of the nickel cyanide as a precursor for the carbonyl complexes is preferred. Pretreatment of the cyanide with carbon monoxide under basic conditions is thought to produce the tricarbonylnickel cyanide anion [19], as the active metal catalyst. Reaction with allyl halides, in a manner analogous to that outlined for the preparation of the arylacetic acids, produces the butenoic acids (Table 8.7). [Pg.374]

In either case, for the conversion of the linoleic and oleic acids into stearic acid, the temperature of the acids should be between 200° and 220° C. When the nickel is introduced, in the form of carbonyl, at the same time as the hydrogen, the carbonyl is decomposed into metallic nickel and carbon monoxide—the latter taking no part whatever in the reaction and being available for the production of further nickel carbonyl... [Pg.37]

The Reppe process was commercialized in the 1950s. It involves the reaction pf acetylene, carbon monoxide, and an alcohol (methyl, ethyl, etc.) to give an acrylic ester (an acrylate). The process is carried out at 125°F and 15—30 psi in a nickel carbonyl/aqueous hydrochloric acid solution. The nickel carbonyl acts as both a catalyst and a secondary source of carbon monoxide. [Pg.282]

Two final examples of the sensitivity and general applicability of the FTIR gas analysis technique are illustrated in Fig. 8. Trace (A) shows the spectrum obtained from an ultra-air filled 70 liter sampling bag into which had been injected, 18 hours previously, 4.8 microliters of TDI, toluene diisocyanate. On the basis of the single feature at 2273 cm l, it is estimated that 50 ppb TDI could be detected. The lower Trace (B), shows the spectrum of nickel carbonyl. This highly toxic but unstable gas was found to decay rapidly at ppm concentrations in ultra air (50% lifetime 15 minutes). Calibration of its spectrum was established by recording successive spectra at ten minute intervals and by attributing the increase in carbon monoxide concentration (calibration known) to an equivalent but four times slower decrease in nickel carbonyl concentration. The spectrum shown represents 0.6 ppm of the material. Note the extraordinary absorption strength. The detection limit is thus less than 10 ppb. [Pg.174]

In the case of phosphine, especially tri-n-butyl and triphenyl phosphines, an active phosphine complex is formed in the reaction medium via reaction with nickel carbonyl. This complex is a very active species provided that the optimum concentration of phosphine is used. Low phosphine concentration results in a loss of the effective nickel concentration through the formation of nickel tetra-carbonyl, nickel metal or nickel iodide. The absolute concentration of phosphine is less important than the P/Ni ratio. In addition to form the stable Ni-P catalyst, the phosphine has to compete with other ligands in the reaction mixture for nickel. With high carbon monoxide partial pressure, there is more CO in solution to compete with phosphine favoring the formation of the carbonyl, which is inactive under the reaction conditions. Hence with high carbon mon-... [Pg.63]

Nickel metal, nickel monoxide and sulfide dust, soluble nickel compounds Nickel carbonyl Germany nickel carbonyl Sweden nickel metal... [Pg.516]

Table I shows that there is a general tendency for the C—0 force constant to fall as the constant on the other side of the carbon increases. In all these compounds (except ketene) the symmetry is such that there must be two equivalent ir-bonds between carbon and oxygen decrease of the force constant is a measure of the weakening of these bonds, as compared to free carbon monoxide, by the presence of a third atom which can also form ir-bonds. Table II shows that the bonds are also lengthened slightly by the process. The position of nickel carbonyl in the series shows that the back-... Table I shows that there is a general tendency for the C—0 force constant to fall as the constant on the other side of the carbon increases. In all these compounds (except ketene) the symmetry is such that there must be two equivalent ir-bonds between carbon and oxygen decrease of the force constant is a measure of the weakening of these bonds, as compared to free carbon monoxide, by the presence of a third atom which can also form ir-bonds. Table II shows that the bonds are also lengthened slightly by the process. The position of nickel carbonyl in the series shows that the back-...

See other pages where Nickel carbonyl monoxide is mentioned: [Pg.608]    [Pg.77]    [Pg.102]    [Pg.135]    [Pg.13]    [Pg.547]    [Pg.52]    [Pg.608]    [Pg.482]    [Pg.1035]    [Pg.233]    [Pg.450]    [Pg.451]    [Pg.499]    [Pg.59]    [Pg.221]    [Pg.138]    [Pg.450]    [Pg.451]    [Pg.499]    [Pg.134]    [Pg.9]    [Pg.30]   
See also in sourсe #XX -- [ Pg.41 ]




SEARCH



1 monoxide carbonyls

Carbon monoxide nickel carbonyl formation

Nickel carbonyl

Nickel carbonylation

Nickel monoxide

© 2024 chempedia.info