Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel salts catalysts

The reaction is carried out in the Hquid phase at 373—463 K and 3 MPa (30 atm) of carbon monoxide pressure using nickel salt catalyst, or at 313 K and 0.1 MPa (1 atm) using nickel carbonyl as both the catalyst and the source of carbon monoxide. Either acryHc acid or methyl acrylate may be produced directly, depending on whether water or methanol is used as solvent (41). New technology for acryHc acid production uses direct propjdene oxidation rather than acetylene carbonylation because of the high cost of acetjdene. This new process has completely replaced the old in the United States (see... [Pg.51]

Gyclooctatetraene (GOT). Tetramerization of acetylene to cyclooctatetraene [629-20-9], CgHg, although interesting, does not seem to have been used commercially. Nickel salts serve as catalysts. Other catalysts give ben2ene. The mechanism of this cyclotetramerhation has been studied (4). [Pg.102]

Nickel sulfide, NiS, can be prepared by the fusion of nickel powder with molten sulfur or by precipitation usiag hydrogen sulfide treatment of a buffered solution of a nickel(II) salt. The behavior of nickel sulfides ia the pure state and ia mixtures with other sulfides is of iaterest ia the recovery of nickel from ores, ia the high temperature sulfide corrosion of nickel alloys, and ia the behavior of nickel-containing catalysts. [Pg.11]

Nickel plays a role in the Reppe polymeriza tion of acetylene where nickel salts act as catalysts to form cyclooctatetraene (62) the reduction of nickel haUdes by sodium cyclopentadienide to form nickelocene [1271 -28-9] (63) the synthesis of cyclododecatrienenickel [39330-67-1] (64) and formation from elemental nickel powder and other reagents of nickel(0) complexes that serve as catalysts for oligomerization and hydrocyanation reactions (65). [Pg.11]

Other simple nickel salts of organic acids include the oxalate [20543-06-0] oleate [68538-38-5], and stearate [2223-95-2]. The latter two have been used as oil-soluble nickel forms in the dyeing of synthetic polyolefin fibers (see Driers and metallic soaps). Nickel oxalate has been used as a catalyst intermediate (59). [Pg.13]

Other Specialty Chemicals. In fuel-ceU technology, nickel oxide cathodes have been demonstrated for the conversion of synthesis gas and the generation of electricity (199) (see Fuel cells). Nickel salts have been proposed as additions to water-flood tertiary cmde-oil recovery systems (see Petroleum, ENHANCED oil recovery). The salt forms nickel sulfide, which is an oxidation catalyst for H2S, and provides corrosion protection for downweU equipment. Sulfur-containing nickel complexes have been used to limit the oxidative deterioration of solvent-refined mineral oils (200). [Pg.15]

Diacetone-L-sorbose (DAS) is oxidized at elevated temperatures in dilute sodium hydroxide in the presence of a catalyst (nickel chloride for bleach or palladium on carbon for air) or by electrolytic methods. After completion of the reaction, the mixture is worked up by acidification to 2,3 4,6-bis-0-isoptopyhdene-2-oxo-L-gulonic acid (2,3 4,6-diacetone-2-keto-L-gulonic acid) (DAG), which is isolated through filtration, washing, and drying. With sodium hypochlorite/nickel chloride, the reported DAG yields ate >90% (65). The oxidation with air has been reported, and a practical process was developed with palladium—carbon or platinum—carbon as catalyst (66,67). The electrolytic oxidation with nickel salts as the catalyst has also... [Pg.16]

Dehalogenation of monochlorotoluenes can be readily effected with hydrogen and noble metal catalysts (34). Conversion of -chlorotoluene to Ncyanotoluene is accompHshed by reaction with tetraethyl ammonium cyanide and zero-valent Group (VIII) metal complexes, such as those of nickel or palladium (35). The reaction proceeds by initial oxidative addition of the aryl haHde to the zerovalent metal complex, followed by attack of cyanide ion on the metal and reductive elimination of the aryl cyanide. Methylstyrene is prepared from -chlorotoluene by a vinylation reaction using ethylene as the reagent and a catalyst derived from zinc, a triarylphosphine, and a nickel salt (36). [Pg.53]

Modem cross coupling chemistry is heavily dominated by the use of palladium and nickel complexes as the catalysts, which show an impressively wide scope and an excellent compatibility with many functional groups.2 This favorable application profile usually overcompensates the disadvantages resulting from the high price of the palladium precursors, the concerns about the toxicity of nickel salts, the need for ancillary ligands to render the complexes sufficiently active and stable, and the extended reaction times that are necessary in certain cases. [Pg.18]

In contrast to the processes of Ethyl and of Chevron/Gulf, which use Ziegler catalyst in the oligomerization of the ethylenes, Shell uses a self-developed catalyst system consisting of, for example, a nickel salt, a rm-organophosphine group, and a polar solvent such as 1,4-butanediol (3) [34,35] ... [Pg.50]

The reaction with ammonia or amines, which undoubtedly proceeds by the SnAt mechanism, is catalyzed by copper and nickel salts, though these are normally used only with rather unreactive halides. This reaction, with phase-transfer catalysis, has been used to synthesize triarylamines. Copper ion catalysts (especially cuprous oxide or iodide) also permit the Gabriel synthesis (10-61) to be... [Pg.864]

Ligand-free catalysts have been prepared from the following types of nickel(II) compounds nickel salts of long-chain aliphatic or aromatic carboxylic acids (10, 11) or of sulfonic acids (11), nickel enolates of /3-diketones (11) [e.g., nickel acetylacetonate (4, 12)] or their imino derivatives (11, 13), nickel phenolates (11), dithiocarbamates (14), and mer-captides (15). [Pg.108]

Raney nickel has long been known as a hydrogenation catalyst. Other forms of active nickel can be easily prepared by reducing nickel salts in situ with NaBH4, Fe, Grignard reagents, etc. (199-202). [Pg.235]

The homogeneous nature of the catalysts is confirmed by the linear dependence of the catalytic activity on the concentration of nickel(II). Only in the case of a truly homogeneous catalyst is the activity expected to be directly proportional to the catalyst concentration. In the case of the formation of nanoclusters, larger agglomerates - and, therefore, a comparatively lower number of active sites - will be formed at higher concentrations of the nickel salt Furthermore, a sigmoidal curve for the rate of consumption of substrate has been proposed... [Pg.108]

The catalyst is prepared in a pre-reactor from nickel salts with boron hydrides as the reductant under a pressure of ethene and then ligand is added. [Pg.176]

Nickel chloride is used in nickel electroplating baths. It also is used to prepare various nickel salts and nickel catalysts and in industrial gas masks to protect from ammonia. [Pg.612]

Nickel oxide is used in the ceramic industry for making frit, ferrites, and coloring porcelain. The oxide in sinter form is used in the production of nickel-steel alloys. It supplies oxygen to the melt for removal of carbon as carbon dioxide. Some other important uses of nickel oxide include preparation of many nickel salts, specialty chemicals, and nickel catalysts. It also is used as an electrode in fuel cells. [Pg.619]

Nickel salts are used in electroplating, ceramics, pigments, and as catalysts. Sinter nickel oxide is used as charge material in the manufacture of alloy steel and stainless steel. Nickel is also used in alkaline (nickel-cadmium) batteries. [Pg.170]

Nickel carbonyl charged, or formed in the carbonylation reaction mixture, can catalyze the carbonylation of methanol (11). To maintain the activity of the nickel carbonyl catalyst high temperature and pressure are required (12-14). However, certain promoters can maintain an active, soluble, nickel carbonyl species under much milder conditions. The most reactive promoters are phosphines, alkali metal salts, tin compounds, and 2-hydroxypyridine. Reaction rates of 2 to 7 X 10-3(mol/1.sec) can be achieved without the use of high concentration of iodine (Table II). in addition, high reaction rates... [Pg.63]

As in the synthesis of other bipyridines, several routes to 4,4 -bipyridine have been devised where one of the pyridine rings is built up from simpler components. For example, a dimer of acrolein reacts with ammonia and methanol in the presence of boron phosphate catalyst at 350°C to give a mixture of products including 4,4 -bipyridine (3.4% yield), and in a reaction akin to ones referred to with other bipyridines, 4-vinylpyridine reacts with substituted oxazoles in the presence of acid to give substituted 4,4 -bipyridines. ° ° Condensation of isonicotinaldehyde with acetaldehyde and ammonia at high temperatures in the presence of a catalyst also affords some 4,4 -bipyridine, and related processes give similar results,whereas pyran derivatives can be converted to 4,4 -bipyridine (56% conversion), for example, by reaction with ammonia and air at 350°C with a nickel-alumina catalyst. Likewise, 2,6-diphenyl-4-(4-pyridyl)pyrylium salts afford 2,6-... [Pg.328]

CO2 molecule, or Mg + and CO2 play the role of oxide acceptor to form water, carbonate, and MgC03, respectively [38]. The reactions of the iron carboxylate with these Lewis acids are thought to be fast and not rate determining. For the cobalt and nickel macrocyclic catalysts, CO2 is the ultimate oxide acceptor with formation of bicarbonate salts in addition to CO, but it is not clear what the precise pathway is for decomposition of the carboxylate to CO [33]. The influence of alkali metal ions on CO2 binding for these complexes was discussed earlier [15]. It appears the interactions between bound CO2 and these ions are fast and reversible, and one would presume that reactions between protons and bound CO2 are rapid as well. [Pg.213]

Ni(acac)2 acts as a catalyst for this carbomagnesiation". The remarkable effect of nickel salts on this allylation reaction has three interconnected advantages more rapid... [Pg.664]


See other pages where Nickel salts catalysts is mentioned: [Pg.1]    [Pg.3]    [Pg.9]    [Pg.13]    [Pg.261]    [Pg.229]    [Pg.110]    [Pg.388]    [Pg.357]    [Pg.161]    [Pg.291]    [Pg.97]    [Pg.101]    [Pg.563]    [Pg.187]    [Pg.259]    [Pg.259]    [Pg.46]    [Pg.734]    [Pg.260]    [Pg.200]    [Pg.341]    [Pg.555]   


SEARCH



Nickel salts

© 2024 chempedia.info