Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural rubber solvent resistance

Natural rubber is resistant to dilute mineral acids, alkahes, and salts, but oxidizing media, oils, and most organic solvents will attack it. Hard rubber is made by adding 25 percent or more of sulfur to natural or synthetic rubber and, as such, is both hard and strong. Chloroprene or neoprene rubber is resistant to attack by ozone, sunlight, oils, gasoline, and aromatic or halogenated solvents but is... [Pg.44]

Nitrile elastomers do not erystallize when stretched and so require reinforeing fillers to develop optimum tensile strength, abrasion resistance, and tear resistance. They also possess poor building tack. Although nitrile rubbers are broadly oil- and solvent-resistant, they are suseeptible to attack by certain strongly polar liquids, to whieh the nonpolar rubbers, sueh as SBR or natural rubber, are resistant. Nitrile rubber is poorly eompatible with natural rubber, but ean be blended in all proportions with SBR. This deereases overall oil resistance, but increases resistanee to polar liquids in proportion to the SBR eontent. Nitrile polymers are inereasingly used as... [Pg.208]

Oxidized castor oils are excellent nonmigrating, nonvolatile plasticizers (qv) for ceUulosic resins, poly(vinyl butyral), polyamides, shellac, and natural and synthetic mbber (see Rubber, natural). The high viscosity products are also used as tackifiers in gasket compounds and adhesives (qv) because of good oil and solvent resistance. They also serve as excellent pigment grinding media and as a base for inks (qv), lubricating oils, and hydrauHc oils (62). [Pg.155]

Styrene-butadiene (SBR) 250 Better water resistance than natural rubber. Fair to good resistance to acids, alkalies. Unsuitable with gasobue, oils and solvents. [Pg.2474]

There is much evidence that weak links are present in the chains of most polymer species. These weak points may be at a terminal position and arise from the specific mechanism of chain termination or may be non-terminal and arise from a momentary aberration in the modus operandi of the polymerisation reaction. Because of these weak points it is found that polyethylene, polytetrafluoroethylene and poly(vinyl chloride), to take just three well-known examples, have a much lower resistance to thermal degradation than low molecular weight analogues. For similar reasons polyacrylonitrile and natural rubber may degrade whilst being dissolved in suitable solvents. [Pg.96]

Like NR, SBR is an unsaturated hydrocarbon polymer. Hence unvulcanised compounds will dissolve in most hydrocarbon solvents and other liquids of similar solubility parameter, whilst vulcanised stocks will swell extensively. Both materials will also undergo many olefinic-type reactions such as oxidation, ozone attack, halogenation, hydrohalogenation and so on, although the activity and detailed reactions differ because of the presence of the adjacent methyl group to the double bond in the natural rubber molecule. Both rubbers may be reinforced by carbon black and neither can be classed as heat-resisting rubbers. [Pg.292]

Oil resistance demands polar (non-hydrocarbon) polymers, particularly in the hard phase. If the soft phase is non-polar but the haid phase polar, then swelling but not dissolution will occur (rather akin to that occurring with vulcanised natural rubber or SBR). If, however, the hard phase is not resistant to a particular solvent or oil, then the useful physical properties of a thermoplastic elastomer will be lost. As with all plastics and rubbers, the chemical resistant will depend on the chemical groups present, as discussed in Section 5.4. [Pg.876]

Standard-grade PSAs are usually made from styrene-butadiene rubber (SBR), natural rubber, or blends thereof in solution. In addition to rubbers, polyacrylates, polymethylacrylates, polyfvinyl ethers), polychloroprene, and polyisobutenes are often components of the system ([198], pp. 25-39). These are often modified with phenolic resins, or resins based on rosin esters, coumarones, or hydrocarbons. Phenolic resins improve temperature resistance, solvent resistance, and cohesive strength of PSA ([196], pp. 276-278). Antioxidants and tackifiers are also essential components. Sometimes the tackifier will be a lower molecular weight component of the high polymer system. The phenolic resins may be standard resoles, alkyl phenolics, or terpene-phenolic systems ([198], pp. 25-39 and 80-81). Pressure-sensitive dispersions are normally comprised of special acrylic ester copolymers with resin modifiers. The high polymer base used determines adhesive and cohesive properties of the PSA. [Pg.933]

Although rubber originally meant a natural thermoset material obtained from a rubber tree, with the development of plastics it identifies a thermoset elastomer (TSE) or thermoplastic elastomer (TPE) material. Different properties identify the elastomers such as strength and stiffness, abrasion resistance, solvent resistance, shock and... [Pg.359]

Rubber, particularly in the form of linings for tanks and pipes, has been extensively used in the chemical industry for many years. Natural rubber is most commonly used, because of its good resistance to acids (except concentrated nitric) and alkalies. It is unsuitable for use with most organic solvents. [Pg.303]

Synthetic rubbers are also used for particular applications. Hypalon (trademark, E. I. du Pont de Nemours) has a good resistance to strongly oxidising chemicals and can be used with nitric acid. It is unsuitable for use with chlorinated solvents. Viton (trademark, E. I. du Pont de Nemours) has a better resistance to solvents, including chlorinated solvents, than other rubbers. Both Hypalon and Viton are expensive, compared with other synthetic, and natural, rubbers. [Pg.303]

Solvent Resistance. One of the distinct advantages of a crystalline thermoplastic elastomer over an amorphous one should be its superior solvent resistance, since the latter types are generally soluble. Table III shows the swelling behavior of the H2-BIB triblocks in toluene at 25°C. It can be seen that the maximum swelling obtained was in the case of the H2-BIB-34, which had the lowest end-block content. Furthermore, the equilibrium swelling ratio of 3-26 obtained for this polymer is considerably less than the value of 5 or 6 generally exhibited by a well-vulcanized natural rubber. [Pg.116]

Nitrile rubbers have high resistance to oils and organic solvents, and, although their mechanical properties are not as good as those of natural rubber, they are subject to much less deterioration in the presence of oils and solvents. They are not resistant to ozone attack. [Pg.43]

Vulcanisation of rubber Natural rubber becomes soft at high temperature (>335 K) and brittle at low temperatures (<283 K) and shows high water absorption capacity, it Is soluble in non-polar solvents and Is non-resistant to attack by oxidising agents. To improve upon these physical properties, a process of vulcanisation is carried out. This process consists of heating a mixture of raw rubber with sulphur and an appropriate additive at a temperature range between 373 K to 415 K. On vulcanisation, sulphur forms cross links at the reactive sites of double bonds and thus the rubber gets stiffened. [Pg.157]

Most polystyrene products are not homopolystyrene since the latter is relatively brittle with low impact and solvent resistance (Secs. 3-14b, 6-la). Various combinations of copolymerization and blending are used to improve the properties of polystyrene [Moore, 1989]. Copolymerization of styrene with 1,3-butadiene imparts sufficient flexibility to yield elastomeric products [styrene-1,3-butadiene rubbers (SBR)]. Most SBR rubbers (trade names Buna, GR-S, Philprene) are about 25% styrene-75% 1,3-butadiene copolymer produced by emulsion polymerization some are produced by anionic polymerization. About 2 billion pounds per year are produced in the United States. SBR is similar to natural rubber in tensile strength, has somewhat better ozone resistance and weatherability but has poorer resilience and greater heat buildup. SBR can be blended with oil (referred to as oil-extended SBR) to lower raw material costs without excessive loss of physical properties. SBR is also blended with other polymers to combine properties. The major use for SBR is in tires. Other uses include belting, hose, molded and extruded goods, flooring, shoe soles, coated fabrics, and electrical insulation. [Pg.529]

Although a large number of synthetic elastomers are now available, natural rubber must still be regarded as the standard elastomer because of the excellently balanced combination of desirable qualities. The most important synthetic elastomer is styrene-butadiene rubber (SBR), which is used predominantly for tires when reinforced with carbon black. Nitrile rubber (NR) is a raudom copolymer of acrylonitrile and butadiene and is used when an elastomer is required that is resistant to swelling in organic solvents. [Pg.469]

Sometimes a polyurethane component used in the wrong duty condition will appear to be performing better than the same part made from a more water resistant elastomer such as natural rubber and then it will fail rapidly. Certain chemical environments (strong acids and bases and polar solvents such as ketones or esters) are also unsuitable for polyurethanes because of their polar nature. [Pg.105]

If solid polymer objects are fluorinated or polymer particles much larger than 100 mesh are used, only surface conversion to fluorocarbon results. Penetration of fluorine and conversion of the hydrocarbon to fluorocarbon to depths of at least 0.1 mm is a result routinely obtained and this assures nearly complete conversion of finely powdered polymers. These fluorocarbon coatings appear to have a number of potentially useful applications ranging from increasing the thermal stability of the surface and increasing the resistance of polymer surfaces to solvents and corrosive chemicals, to improving friction and wear properties of polymer surfaces. It is also possible to fluorinate polymers and polymer surfaces partially to produce a number of unusual surface effects. The fluorination process can be used for the fluorination of natural rubber and other elastomeric surfaces to improve frictional characteristics and increase resistance to chemical attack. [Pg.177]

Nitrile rubber was invented at about the same time as SBR in the German program to find substitutes for natural rubber.56 These rubbers are copolymers of acrylonitrile-butadiene, containing from 15 to 40 percent acrylonitrile. The major applications for this material are in areas requiring oil and solvent resistance. The estimated worldwide consumption in 2003 was 303,000 metric tons.57... [Pg.708]

Neoprene (du Pont) is a rubberlike material that is a polymer of 2-chloro-l,3-butadiene. Somewhat less flexible than natural rubber, it has greater resistance to oUs, greases, hydrocarbon solvents, and other chemicals. Neoprene is useful for gaskets, 0-rings, and tubing. [Pg.655]


See other pages where Natural rubber solvent resistance is mentioned: [Pg.2461]    [Pg.435]    [Pg.2216]    [Pg.435]    [Pg.2465]    [Pg.1830]    [Pg.514]    [Pg.574]    [Pg.474]    [Pg.85]    [Pg.44]    [Pg.132]    [Pg.15]    [Pg.300]    [Pg.269]    [Pg.143]    [Pg.174]    [Pg.80]    [Pg.149]    [Pg.203]    [Pg.204]    [Pg.262]    [Pg.110]    [Pg.1589]    [Pg.301]    [Pg.313]   


SEARCH



Natural resistance

Resist solvents

Rubber solvent resistance

Solvent nature

Solvent resistance

© 2024 chempedia.info