Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural products specificity

In contrast to this polyspecific ABPP probe suitable for profiling a large fraction of the protein kinase family, several other approaches have been introduced, which focus on specific subfamilies. Wortmannin, for example, is a potent natural product specific for the inhibition of phosphoinositide 3- and polo-like kinases in vitro and in vivo. Its role in ABPP probe design will be discussed in the natural product-derived probe section (Section 9.17.3.3)97 98... [Pg.648]

Julian is noted for his work with steroids from natural products. Specifically, he synthesized chemicals used in the treatment of glaucoma and rheumatoid arthritis. In 1953, he founded The Julian Laboratories, Inc. [Pg.773]

The four major sources of starting material for drug screens are chemical libraries, natural products, specifically designed medicinal chemistry-derived drugs often modified and synthesized using directed combinatorial chemistry—and computationally designed drugs. [Pg.41]

Many stereoselective reactions have been most thoroughly studied with steroid examples because the rigidity of the steroid nucleus prevents conformational changes and because enormous experience with analytical procedures has been gathered with this particular class of natural products (J. Fried, 1972). The name steroids (stereos (gr.) = solid, rigid) has indeed been selected very well, if one considers stereochemical problems. We shall now briefly point to some other interesting, more steroid-specific reactions. [Pg.288]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Health and safety information is available from the manufacturer of every adhesive sold in the United States. The toxicology of a particular adhesive is dependent upon its components, which mn the gamut of polymeric materials from natural products which often exhibit low toxicity to isocyanates which can cause severe allergic reactions. Toxicological information may be found in articles discussing the manufacture of the specific chemical compounds that comprise the adhesives. [Pg.236]

Synthetic utility of stereoselective alkylations in natural product chemistry is exemplified by the preparation of optically active 2-arylglycine esters (38). Chirally specific a-amino acids with methoxyaryl groups attached to the a-carbon were prepared by reaction of the dimethyl ether of a chiral bis-lactam derivative with methoxy arenes. Using SnCl as the Lewis acid, enantioselectivities ranging from 65 to 95% were obtained. [Pg.553]

These chemorational techniques have generated great interest in, and high expectations for, the acceleration of development of innovative pesticides. However, many purportedly successful appHcations of QSAR procedures have reHed on the quaHtative insights traditionally associated with art-based pesticide development programs. Retrospective QSAR analyses have, however, been helpful in identifying the best compounds for specific uses (17). Chemorational techniques have also found some appHcations in the development of pesticides from natural product lead compounds, the best known examples being the synthetic pyrethroid insecticides (19) modeled on the plant natural product, pyrethmm. [Pg.39]

Natural Product hGH. In 1944 the preparation of a highly purified growth hormone from bovine pituitary glands was reported (37). Subsequendy, growth hormones derived from animal pituitaries were found to be ineffective in humans the existence of specificity among species for growth hormone was thus estabUshed. [Pg.197]

Purification of Carbide Acetylene. The purity of carbide acetylene depends largely on the quaUty of carbide employed and, to a much lesser degree, on the type of generator and its operation. Carbide quahty in turn is affected by the impurities in the raw materials used in carbide production, specifically, the purity of the metallurgical coke and the limestone from which the lime is produced. The nature and amounts of impurities in carbide acetylene are shown in Table 4. [Pg.380]

Applications. The most ubiquitous use of infrared spectrometry is chemical identification. It has long been an important tool for studying newly synthesi2ed compounds in the research lab, but industrial identification uses cover an even wider range. In many industries ir spectrometry is used to assay feedstocks (qv). In the flavors (see Flavors and spices), fragrances (see Perfumes), and cosmetics (qv) industries, it can be used not only for gross identification of feedstocks, but for determining specific sources. The spectra of essential oils (see Oils, essential), essences, and other natural products vary with the season and source. Adulteration and dilution can also be identified. [Pg.201]

Because of the time and expense involved, biological assays are used primarily for research purposes. The first chemical method for assaying L-ascorbic acid was the titration with 2,6-dichlorophenolindophenol solution (76). This method is not appHcable in the presence of a variety of interfering substances, eg, reduced metal ions, sulfites, tannins, or colored dyes. This 2,6-dichlorophenolindophenol method and other chemical and physiochemical methods are based on the reducing character of L-ascorbic acid (77). Colorimetric reactions with metal ions as weU as other redox systems, eg, potassium hexacyanoferrate(III), methylene blue, chloramine, etc, have been used for the assay, but they are unspecific because of interferences from a large number of reducing substances contained in foods and natural products (78). These methods have been used extensively in fish research (79). A specific photometric method for the assay of vitamin C in biological samples is based on the oxidation of ascorbic acid to dehydroascorbic acid with 2,4-dinitrophenylhydrazine (80). In the microfluorometric method, ascorbic acid is oxidized to dehydroascorbic acid in the presence of charcoal. The oxidized form is reacted with o-phenylenediamine to produce a fluorescent compound that is detected with an excitation maximum of ca 350 nm and an emission maximum of ca 430 nm (81). [Pg.17]

This index contains over 40,000 individual entries to the 6200 text pages of Volumes 1-7. The index mainly covers general classes of heterocyclic compound and specific heterocyclic compounds, but also included are natural products, other organic and organometallic compounds where their synthesis or use involves heterocyclic compounds, types of reaction, named reactions, spectroscopic techniques and topics involving heterocyclic compounds. [Pg.507]

Many classes of natural product possess heterocyclic components (e.g. alkaloids, carbohydrates). However, their structures are often complex, and although structure-based names derived by using the principles outlined in the foregoing sections can be devised, such names tend to be impossibly cumbersome. Furthermore, the properties of complex natural product structures are often closely bound up with their stereochemistry, and for a molecule containing a number of asymmetric elements the specification of a particular stereoisomer by using the fundamental descriptors (R/S, EjZ) is a job few chemists relish. [Pg.28]

The structure of a natural product is shown without any specification of stereochem-istiy. It is a pure substance which gives no indication of being a mixture of stereoisomers and has zero optical rotation. It is not a racemic mixture because it does not yield separate peaks on a chiral HPLC column. When the material is completely hydrolyzed, it gives a racemic sample of the product shown. Deduce the complete stereochemical structure of the natural product fiom this information. [Pg.122]

The testing of chemicals/wastes to establish the nature of their hazard capacity/threat in accordance with regulatory requirements falls into four categories (1) reactivity, (2) ignitability/flammability, (3) corrosivity, and (4) EP toxicity. Commercial chemical products, specific wastes, and wastes from specific processes may be listed as hazardous wastes because they are known to present toxic hazards in the manner of the tests above and/or are known to present serious toxic hazards to mammals/humans. In the discussion to follow, various chemical groups will be examined primarily in the context of reactivity, ignitability, and corrosivity. [Pg.164]

In the realm of natural product synthesis, Kepler and Rehder utilized the K-R reaction to synthesize ( )-calanolide A (56), a potent non-nucleosidal human irmnunodeficiency virus (HIV-1) specific reverse transcriptase inhibitor. Propiophenone 57 was allowed to react with acetic anhydride in the presence of sodium acetate to afford benzopyranone 58 in 56% yield subsequent deacetylation of 58 gave 59. Flavone 59 was then transformed to ( ) calanolide A (56) over several steps. [Pg.529]

The analysis of complex matrices, such as natural products, food products, environmental pollutants and fossil fuels, is today a very important area of separation science. The latest developments in chromatographic techniques have yielded highly efficient systems, used with specific detectors to obtain high selectivity and or sensitivity. [Pg.16]

The study of biochemical natural products has also been aided through the application of two-dimensional GC. In many studies, it has been observed that volatile organic compounds from plants (for example, in fruits) show species-specific distributions in chiral abundances. Observations have shown that related species produce similar compounds, but at differing ratios, and the study of such distributions yields information on speciation and plant genetics. In particular, the determination of hydroxyl fatty acid adducts produced from bacterial processes has been a successful application. In the reported applications, enantiomeric determination of polyhydroxyl alkanoic acids extracted from intracellular regions has been enabled (45). [Pg.68]


See other pages where Natural products specificity is mentioned: [Pg.100]    [Pg.522]    [Pg.512]    [Pg.288]    [Pg.182]    [Pg.100]    [Pg.522]    [Pg.512]    [Pg.288]    [Pg.182]    [Pg.53]    [Pg.344]    [Pg.1]    [Pg.446]    [Pg.419]    [Pg.39]    [Pg.55]    [Pg.172]    [Pg.33]    [Pg.41]    [Pg.120]    [Pg.298]    [Pg.267]    [Pg.458]    [Pg.318]    [Pg.574]    [Pg.68]    [Pg.148]    [Pg.8]    [Pg.13]    [Pg.168]    [Pg.525]    [Pg.355]    [Pg.408]    [Pg.427]   
See also in sourсe #XX -- [ Pg.63 , Pg.65 ]




SEARCH



Cycle-Specific Cascade Catalysis in Natural Product Synthesis

Product specification

Product specificity

© 2024 chempedia.info