Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiphasic reaction

However, a note of caution should be added. In many multiphase reaction systems, rates of mass transfer between different phases can be just as important or more important than reaction kinetics in determining the reactor volume. Mass transfer rates are generally higher in gas-phase than liquid-phase systems. In such situations, it is not so easy to judge whether gas or liquid phase is preferred. [Pg.45]

Tubular reactors, as previously stated, are also advantageous for high-pressure reactions where smaller-diameter cylindrical vessels can be used to allow thinner vessel walls. Tubular reactors should be avoided when carrying out multiphase reactions, since it is often difficult to achieve good mixing between phases. [Pg.55]

Reaction rates typically are strongly affected by temperature (76,77), usually according to the Arrhenius exponential relationship. However, side reactions, catalytic or equiHbrium effects, mass-transfer limitations in heterogeneous (multiphase) reactions, and formation of intermediates may produce unusual behavior (76,77). Proposed or existing reactions should be examined carefully for possible intermediate or side reactions, and the kinetics of these side reactions also should be observed and understood. [Pg.97]

A useful classification of lands of reaclors is in terms of their concentration distributions. The concentration profiles of certain limiting cases are illustrated in Fig. 7-3 namely, of batch reactors, continuously stirred tanks, and tubular flow reactors. Basic types of flow reactors are illustrated in Fig. 7-4. Many others, employing granular catalysts and for multiphase reactions, are illustratea throughout Sec. 23. The present material deals with the sizes, performances and heat effects of these ideal types. They afford standards of comparison. [Pg.695]

Accelerating Rate Calorimeter (ARC) The ARC can provide extremely useful and valuable data. This equipment determines the self-heating rate of a chemical under near-adiabatic conditions. It usu-aUy gives a conservative estimate of the conditions for and consequences of a runaway reaction. Pressure and rate data from the ARC may sometimes be used for pressure vessel emergency relief design. Activation energy, heat of reaction, and approximate reaction order can usually be determined. For multiphase reactions, agitation can be provided. [Pg.2312]

Obviously, there are many good reasons to study ionic liquids as alternative solvents in transition metal-catalyzed reactions. Besides the engineering advantage of their nonvolatile natures, the investigation of new biphasic reactions with an ionic catalyst phase is of special interest. The possibility of adjusting solubility properties by different cation/anion combinations permits systematic optimization of the biphasic reaction (with regard, for example, to product selectivity). Attractive options to improve selectivity in multiphase reactions derive from the preferential solubility of only one reactant in the catalyst solvent or from the in situ extraction of reaction intermediates from the catalyst layer. Moreover, the application of an ionic liquid catalyst layer permits a biphasic reaction mode in many cases where this would not be possible with water or polar organic solvents (due to incompatibility with the catalyst or problems with substrate solubility, for example). [Pg.252]

Multiphasic Reactions General Features, Scope, and Limitations... [Pg.258]

Notwithstanding their very low vapor pressure, their good thermal stability (for thermal decomposition temperatures of several ionic liquids, see [11, 12]) and their wide operating range, the key property of ionic liquids is the potential to tune their physical and chemical properties by variation of the nature of the anions and cations. An illustration of their versatility is given by their exceptional solubility characteristics, which make them good candidates for multiphasic reactions (see Section 5.3.4). Their miscibility with water, for example, depends not only on the hydrophobicity of the cation, but also on the nature of the anion and on the temperature. [Pg.261]

Table 5.3-2 Different technologies for multiphasic reactions making use of ionic liquids. Table 5.3-2 Different technologies for multiphasic reactions making use of ionic liquids.
If the reaction order does not change, reactions with n < 1 wiU go to completion in finite time. This is sometimes observed. Solid rocket propellants or fuses used to detonate explosives can bum at an essentially constant rate (a zero-order reaction) until all reactants are consumed. These are multiphase reactions limited by heat transfer and are discussed in Chapter 11. For single phase systems, a zero-order reaction can be expected to slow and become first or second order in the limit of low concentration. [Pg.46]

Why are the CSTRs worth considering at all They are more expensive per unit volume and less efficient as chemical reactors (except for autocatalysis). In fact, CSTRs are useful for some multiphase reactions, but that is not the situation here. Their potential justification in this example is temperature control. BoiUng (autorefrigerated) reactors can be kept precisely at the desired temperature. The shell-and-tube reactors cost less but offer less effective temperature control. Adiabatic reactors have no control at all, except that can be set. [Pg.190]

The form of Equation (10.12) is widely used for multiphase reactions. The same model, with slightly diflerent physical interpretations, is used for enzyme catalysis and cell growth. See Chapter 12. [Pg.356]

Other important aspects include the effect of temperature (via activation energy) and mixing, particularly for multiphase reactions. Both of these can impact on selectivity and thus can be improved in operating continuously using the inherent benefits of heat transfer area and mixing strategies discussed previously. [Pg.324]

The rates of multiphase reactions are often controlled by mass tran.sfer across the interface. An enlargement of the interfacial surface area can then speed up reactions and also affect selectivity. Formation of micelles (these are aggregates of surfactants, typically 400-800 nm in size, which can solubilize large quantities of hydrophobic substance) can lead to an enormous increase of the interfacial area, even at low concentrations. A qualitatively similar effect can be reached if microemulsions or hydrotropes are created. Microemulsions are colloidal dispersions that consist of monodisperse droplets of water-in-oil or oil-in-water, which are thermodynamically stable. Typically, droplets are 10 to 100 pm in diameter. Hydrotropes are substances like toluene/xylene/cumene sulphonic acids or their Na/K salts, glycol.s, urea, etc. These. substances are highly soluble in water and enormously increase the solubility of sparingly. soluble solutes. [Pg.9]

Doraiswamy and Sharma (1984) have discussed many practical aspects of conducting multiphase reactions to derive some benefits. [Pg.180]

Example 5.4.4.3b. Optimization of time-profiles for a multireaction and multiphase reaction system (after Marchal-Brassely et al. (1992))... [Pg.326]

The trickle-bed reactor (TBR) and slurry reactor (SR) are the most commonly used for multiphase reactions in the chemical industries. A new reactor type, the monolithic reactor (MR), offers many advantages. Therefore, these three types of reactors are discussed below in more detail. Their general characteristics are given in Table 5.4-44. With respect to slurry reactors, the focus will be on mechanically agitated slurry reactors (MASR) because these are more widely used in fine chemicals manufacture than column slurry reactors. [Pg.389]

In Section 4.3.3 the use of hydrotropes for intensifying multiphase reactions and making them more selective was covered. The key advantage of an aqueous solution of a hydrotrope is that the solute can be recovered by diluting the aqueous solution, after extraction, to a hydrotope concentration below the critical hydrotrope concentration, when a major part of the product will separate out. The diluted solution can then be reconcentrated at reduced pressure to the original concentration for recycle. Thus a number of products of commercial value, such as phenyl ethyl alcohol, can be recovered (Friberg et al 1996 Gaikar and Phatak, 1999). [Pg.418]

Chemical Kinetics, Tank and Tubular Reactor Fundamentals, Residence Time Distributions, Multiphase Reaction Systems, Basic Reactor Types, Batch Reactor Dynamics, Semi-batch Reactors, Control and Stability of Nonisotheimal Reactors. Complex Reactions with Feeding Strategies, Liquid Phase Tubular Reactors, Gas Phase Tubular Reactors, Axial Dispersion, Unsteady State Tubular Reactor Models... [Pg.722]

Mehta VL and Kokossis AC (1988) New Generation Tools for Multiphase Reaction Systems A Validated Systematic Methodology for Novelty and Design Automation, Comput Chem Eng, 22S 5119. [Pg.56]

However, a note of caution should be added. In many multiphase reaction systems, as will be discussed in the next chapter, rates of mass transfer between different phases... [Pg.108]

When optimizing a superstructure for a multiphase reaction, the rate of mass transfer must be specified. This will, to a large extent, be determined by the design of the equipment. Yet, the objective of the superstructure... [Pg.135]


See other pages where Multiphasic reaction is mentioned: [Pg.220]    [Pg.258]    [Pg.259]    [Pg.261]    [Pg.263]    [Pg.265]    [Pg.267]    [Pg.269]    [Pg.271]    [Pg.273]    [Pg.275]    [Pg.277]    [Pg.279]    [Pg.109]    [Pg.61]    [Pg.249]    [Pg.195]    [Pg.149]    [Pg.150]    [Pg.151]    [Pg.165]    [Pg.258]    [Pg.387]    [Pg.136]   
See also in sourсe #XX -- [ Pg.233 ]

See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Multiphase reactions

© 2024 chempedia.info