Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Between different phases

However, a note of caution should be added. In many multiphase reaction systems, rates of mass transfer between different phases can be just as important or more important than reaction kinetics in determining the reactor volume. Mass transfer rates are generally higher in gas-phase than liquid-phase systems. In such situations, it is not so easy to judge whether gas or liquid phase is preferred. [Pg.45]

Where highly poHshed surfaces are manufactured or stored for short intervals between different phases of processing, relative humidity and temperature are both maintained constant to minimise surface moisture films. If these surfaces are shipped or stored for extended intervals, protective coverings or coatings may be required. [Pg.357]

A reactive polymer (RP) is simply a device to alloy different materials by changing their molecular structure inside a compounding machine. True reactive alloying induces an interaction between different phases of an incompatible mixture and assures the stability of the mixture s morphology. The concept is not new. This technology is now capable of producing thousands of new compounds to meet specific design requirements. [Pg.348]

Why Do We Need to Know This Material In earlier chapters, we investigated the nature of the solid, liquid, and gaseous states of matter in this chapter, we extend the discussion to transformations between these states. The discussion introduces the concept of equilibrium between different phases of a substance, a concept that will prove to be of the greatest importance for chemical and biochemical transformations. We also take a deeper look at solutions in this chapter. We shall see how the presence of solutes is used by the body to control the flow of nutrients into and out of living cells and how the properties of solutions are used by oil companies to separate the components of petroleum. [Pg.430]

Experimental studies in electrochemistry deal with the bulk properties of electrolytes (conductivity, etc.) equilibrium and nonequilibrium electrode potentials the structure, properties, and condition of interfaces between different phases (electrolytes and electronic conductors, other electrolytes, or insulators) and the namre, kinetics, and mechanism of electrochemical reactions. [Pg.191]

However, a note of caution should be added. In many multiphase reaction systems, as will be discussed in the next chapter, rates of mass transfer between different phases... [Pg.108]

As shown in Fig. 3, CHEMGL considers 10 major well-mixed compartments air boundary layer, free troposphere, stratosphere, surface water, surface soil, vadose soil, sediment, ground water zone, plant foliage and plant route. In each compartment, several phases are included, for example, air, water and solids (organic matter, mineral matter). A volume fraction is used to express the ratio of the phase volume to the bulk compartment volume. Furthermore, each compartment is assumed to be a completely mixed box, which means all environmental properties and the chemical concentrations are uniform in a compartment. In addition, the environmental properties are assumed to not change with time. Other assumptions made in the model include continuous emissions to the compartments, equilibrium between different phases within each compartment and first-order irreversible loss rate within each compartment [38]. [Pg.55]

This chapter introduces additional central concepts of thermodynamics and gives an overview of the formal methods that are used to describe single-component systems. The thermodynamic relationships between different phases of a single-component system are described and the basics of phase transitions and phase diagrams are discussed. Formal mathematical descriptions of the properties of ideal and real gases are given in the second part of the chapter, while the last part is devoted to the thermodynamic description of condensed phases. [Pg.29]

Concept Phase transfer catalysis (PTC)111 is now a convenient and useful tool in chemistry, especially in preparative organic chemistry. In general, compounds (reactants) located in different phases of a reaction mixture such as water and benzene sluggishly react each other even by harsh stirring the mixture because the reactants can not easily contact together. Phase transfer catalysts transfer between different phases, become highly active species, and catalytically medi-... [Pg.123]

Detergency, or the power of a detergent product to remove soil, depends on the ability of surfactants to lower the interfacial tension between different phases. This can be explained for a typical case where removal of liquid soil is aided by surfactant adsorption onto the soil and substrate surfaces from the cleaning bath (Figure 2) using Young s equation,... [Pg.243]

Space charge layers and contact potential for efficient charge carrier separation can be achieved with proper semiconductor structure in several ways. When possible semiconductor structures are considered, the charge separation can be attained in an active mode, i.e., by the use of a potential bias in a photoelectrochem-ical cell, or in a passive mode, i.e., with the use of proper contact between different phases. [Pg.362]

Design of extraction processes and equipment is based on mass transfer and thermodynamic data. Among such thermodynamic data, phase equilibrium data for mixtures, that is, the distribution of components between different phases, are among the most important. Equations for the calculations of phase equilibria can be used in process simulation programs like PROCESS and ASPEN. [Pg.422]

Basically, whenever isotopic exchanges occur between different phases (i.e., heterogeneous equilibria), isotopic fractionations are more appropriately described in terms of differential reaction rates. Simple diffusion laws are nevertheless appropriate in discussions of compositional gradients within a single phase— induced, for instance, by vacancy migration mechanisms, such as those treated in section 4.10—or whenever the isotopic exchange process does not affect the extrinsic stability of the phase. [Pg.735]

Isotope exchange includes processes with very different physicochemical mechanisms. Here, the term isotope exchange is used for all situations, in which there is no net reaction, but in which the isotope distribution changes between different chemical substances, between different phases, or between individual molecules. [Pg.7]

A phase diagram is often considered as something which can only be measured directly. For example, if the solubility limit of a phase needs to be known, some physical method such as microscopy would be used to observe the formation of the second phase. However, it can also be argued that if the thermodynamic properties of a system could be properly measured this would also define the solubility limit of the phase. The previous sections have discussed in detail unary, single-phase systems and the quantities which are inherent in that sjrstem, such as enthalpy, activity, entropy, etc. This section will deal with what happens when there are various equilibria between different phases and includes a preliminary description of phase-diagram calculations. [Pg.67]

Reverse micelles are microheterogenous media where solubilized enzyme molecules are subject to the partitioning between different phases. The enzyme distribution between the phases is given by [183]... [Pg.148]

Molecular Interactions Determining the Partitioning of Organic Compounds Between Different Phases... [Pg.57]

With these first insights into the molecular interactions that govern the partitioning of organic compounds between different phases in the environment, we are now prepared to tackle some thermodynamic formalisms. We will need these parameters and their interrelationships for quantitative treatments of the various phase transfer processes discussed in the following chapters. [Pg.73]

Finally, it should be pointed out that Part III will add a new important element that we need to describe organic compounds in natural systems, that is, time. So far, we have dealt only with equilibrium concepts (e.g., with the partitioning of organic compounds between different phases), but we have not addressed the question of how fast such equilibria are reached. Thus, in Chapter 12 we will introduce the time axis, that is, we will describe the temporal evolution of a compound concentration due to the influence from various transformation and transport processes. In Part IV we will go one step further and also add space into our considerations. [Pg.460]

Diffusive boundaries also exist between different phases. The best known example is the so-called surface renewal (or surface replacement) model of air-water exchange, an alternative to the stagnant two-film model. It will be discussed in Chapter 20.3. [Pg.869]


See other pages where Between different phases is mentioned: [Pg.123]    [Pg.104]    [Pg.205]    [Pg.386]    [Pg.589]    [Pg.171]    [Pg.138]    [Pg.187]    [Pg.208]    [Pg.227]    [Pg.158]    [Pg.198]    [Pg.470]    [Pg.84]    [Pg.71]    [Pg.34]    [Pg.141]    [Pg.161]    [Pg.5]    [Pg.1]    [Pg.6]    [Pg.59]    [Pg.869]    [Pg.260]    [Pg.54]   
See also in sourсe #XX -- [ Pg.844 ]




SEARCH



Continuous phases, differences between

Difference between reversed-phase

Differences between

Diffusive boundary between different phases

Electrochemistry boundary between different phases

Equilibrium between different phases

Equilibrium between different phases in ideal solutions

Molecular Interactions Determining the Partitioning of Organic Compounds Between Different Phases

Phase difference

Pictorial descriptions of the phase difference between bound and continuum vibrational wavefunctions

Potential difference between two contacting phases

Potential difference between two phases

Supported Liquid-phase Catalyst Sandwiched between Two Different Membranes

Wall boundary between different phases

© 2024 chempedia.info