Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanically agitated slurry reactor

Bubble Reactors In bubble columns the gas is dispersed by nozzles or spargers without mechanical agitation. In order to improve the operation, redispersion at intei vals may be effected by static mixers, such as perforated plates. The liquid may be clear or be a slurry. [Pg.2115]

Slurry Reactors with Mechanical Agitation The catalyst may be retained in the vessel or it may flow out with the fluid and be separated from the fluid downstream. In comparison with trickle beds, high heat transfer is feasible, and the residence time can be made veiy great. Pressure drop is due to sparger friction and hydrostatic head. Filtering cost is a major item. [Pg.2120]

Mass transfer across the liquid-solid interface in mechanically agitated liquids containing suspended solid particles has been the subject of much research, and the data obtained for these systems are probably to some extent applicable to systems containing, in addition, a dispersed gas phase. Liquid-solid mass transfer in such systems has apparently not been studied separately. Recently published studies include papers by Calderbank and Jones (C3), Barker and Treybal (B5), Harriott (H4), and Marangozis and Johnson (M3, M4). Satterfield and Sherwood (S2) have reviewed this subject with specific reference to applications in slurry-reactor analysis and design. [Pg.122]

The trickle-bed reactor (TBR) and slurry reactor (SR) are the most commonly used for multiphase reactions in the chemical industries. A new reactor type, the monolithic reactor (MR), offers many advantages. Therefore, these three types of reactors are discussed below in more detail. Their general characteristics are given in Table 5.4-44. With respect to slurry reactors, the focus will be on mechanically agitated slurry reactors (MASR) because these are more widely used in fine chemicals manufacture than column slurry reactors. [Pg.389]

In a slurry reactor (Fig 5.4.74), the catalyst is present as finely divided particles, typically in the range 1-200 pm. A mechanical stirrer, or the gas flow itself, provides the agitation power required to keep the catalytic particles in suspension. One advantage is the high catalyst utilization not only is the diffusion distance short, it is al.so possible to obtain high mass-transfer rates by proper mixing. [Pg.391]

Agitated slurry reactor (ASR) This is a mechanically agitated gas-liquid-solid reactor (Figure 3.13). The liquid is agitated by a mechanical apparatus (impeller). The fine solid particles are suspended in the liquid phase by means of agitation. Gas is sparged into the liquid phase, entering at the bottom of the tank, normally just under the impeller. This reactor can also be of continuous type or of semibatch type. This type is used only in catalysis. [Pg.78]

These reactors employ small particles in the range 0.05 - 1.0 mm (0.0020 -0.039 in) with the minimum size being limited by filterability. Small diameters are used to provide as large an interface as possible, since the internal surface of porous pellets is poorly accessible to the liquid phase (Perry and Green, 1999). The catalyst concentration in slurry reactors is limited by the agitation power of the mechanical stirrer or by the gas flow. [Pg.102]

In the following we will describe mechanically agitated slurry reactors and slurry bubble columns. [Pg.304]

Bubble slurry column reactors (BSCR) and mechanically stirred slurry reactors (MSSR) are particular types of slurry catalytic reactors (Fig. 5.3-1), where the fine particles of solid catalyst are suspended in the liquid phase by a gas dispersed in the form of bubbles or by the agitator. The mixing of the slurry phase (solid and liquid) is also due to the gas flow. BSCR may be operated in batch or continuous modes. In contrast, MSSR are operated batchwise with gas recirculation. [Pg.304]

The MSSR presents the same advantages as BSCR, such as high efficiency of heat-and mass-transfer and minimal intraparticle diffusional resistance, and are convenient for use in batch processes. For these reasons, the slurry-agitated reactors are also suitable for kinetic studies in the laboratory. Some of their major drawbacks are large power requirement for mechanical agitation,... [Pg.304]

Various types of photocatalytic membrane reactors in which the catalyst was used in different modes have been built with the purpose to have an easy separation of the catalyst from the reaction environment a photocatalyst in suspension in magnetically or mechanically agitated slurries confined by means of a membrane, fixed bed, catalyst deposited or entrapped on an inert support or in a membrane, and so on. [Pg.348]

Agitated Slurry Reactors The gas reactant and solid catalyst are dispersed in a continuous liquid phase by mechanical agitation using stirrers. Most issues associated with gas-liquid-solid stirred tanks are analogous to the gas-liquid systems. In addition to providing good... [Pg.53]

Figure 1. Slurry reactors classified by the contacting pattern and mechanical devices (a) slurry (bubble) column (b) countercurrent column (c) co-current upflow (d) co-current downflow (e) stirred vessel (C) draft tube reactor (g) tray column (h) rotating disc or multi-agitated column reactor (i) three-phase spray column — liquid flow —> gas flow. Figure 1. Slurry reactors classified by the contacting pattern and mechanical devices (a) slurry (bubble) column (b) countercurrent column (c) co-current upflow (d) co-current downflow (e) stirred vessel (C) draft tube reactor (g) tray column (h) rotating disc or multi-agitated column reactor (i) three-phase spray column — liquid flow —> gas flow.
A comparison between a liquid entrained slurry reactor and a mechanically agitated slurry reactor for methanol synthesis was made by Vijayaraghavan et al. [11]. [Pg.471]

Flow patterns in a mechanically agitated reactor with disk turbine, pitched-blade turbine, and propeller types of agitator are schematically illustrated by Joshi et al. (1982). The flow pattern in the presence of gas is described later in the section on slurry reactors. In each of these cases, the dimensionless velocity profile with respect to the impeller tip velocity has been found to be independent of the impeller speed and has shown slight dependence on the impeller diameter. [Pg.11]

Mechanically agitated slurry reactors have a wide range of applications in the chemical, biochemical, and pharmaceutical industries and, in particular, catalytic processes (see Table IV). They are commonly used for catalytic hydrogenation, oxidation, halogenation, or polymerization reactions such as... [Pg.32]

Some Applications of Mechanically Agitated Slurry Reactors... [Pg.33]

In this section, we first evaluate the design of conventional nonaerated and aerated stirred slurry reactors. Since the design of mechanically agitated gas-liquid reactors has already been discussed in Section II, here the main emphasis is placed on the effects of solids on the design parameters. We subsequently illustrate some special-purpose slurry reactors used in the chemical and petrochemical industries. Novel slurry reactors used in biological or polymeric industries are discussed in Sections VI and VII, respectively. [Pg.34]

Shinn (1982) developed a mechanically agitated slurry reactor with induction heaters for coal liquefaction. While the induction heaters required large power input, they allowed the slurry to heat up to 400-450°C in few minutes, thus cutting down the heat-up period. In the use of such reactors, the effects of induction heating on the metal degradation and failure need to be carefully considered. Except for the induction heating system, the rest of the reactor was a conventional slurry reactor. The concept of induction heating is more practical for smaller-size reactors. [Pg.64]

When the catalyst is available in a small amount, a microreactor assembly is often used (Miller, 1987). This is a simple T-type reactor heated by a fluidized sand bath. The mixing is provided by mechanical agitation that shakes the reactor up and down within the fluidized bed. Because of the small amount of slurry, and an effective heat transfer in the fluidized sand bath, the heat-up period in such a reactor is small. The nature of mechanical agitation is, however, energy-efficient. The reactor provides only a small sample for the product analysis, which makes the usefulness of the reactor for detailed kinetic measurements somewhat limited. The reactor has been extensively used for laboratory catalyst screening tests in coal liquefaction. [Pg.65]

Mechanically agitated slurry reactors are widely used in three-phase catalytic and noncatalytic reactions. In aerated slurry reactors, the three regimes outlined in Table V prevail. These regimes are schematically illustrated in Fig. 11. The gas flow rate and stirrer speed where the transition from regimes a to b or b to c with a Rushton turbine stirrer occurs can be estimated from the relationships described in Table VI. [Pg.65]

In this section we consider mechanically agitated reactors that are largely used to study intrinsic kinetics of catalytic reactions. It is clear that the nature of a reactor used for this purpose will depend on the type of kinetic data required, the nature of the reaction system, the nature and amount of catalyst,and safety considerations. Some of the mechanically agitated reactors used for kinetic measurements are illustrated in Table XI. In this section, we will not consider previously discussed conventional slurry reactors and their modifications. [Pg.68]

General design considerations for mechanically agitated gas-liquid and gas-liquid-solid mechanically agitated reactors described earlier in Sections II and III are applicable here. In this section, however, we evaluate additional design considerations that are specific to bioreactors. Novel reactors to overcome specific needs of biological processes are also evaluated in this section. The characteristics of the bioreactors and other chemical/ petrochemical gas-liquid and slurry reactors are compared in Table XX. [Pg.110]

Since mixing and good heat transfer are of vital importance in viscous polymerization reactions, a mechanically agitated continuous stirred-tank reactor is widely used in polymerization processes. Solution polymerization, emulsion polymerization, and solid-catalyzed olefin polymerization are all carried out in a mechanically agitated slurry reactor. [Pg.143]


See other pages where Mechanically agitated slurry reactor is mentioned: [Pg.46]    [Pg.501]    [Pg.2068]    [Pg.267]    [Pg.398]    [Pg.602]    [Pg.29]    [Pg.304]    [Pg.242]    [Pg.139]    [Pg.44]    [Pg.44]    [Pg.50]    [Pg.53]    [Pg.56]    [Pg.2]    [Pg.10]    [Pg.34]    [Pg.58]    [Pg.63]    [Pg.42]    [Pg.1825]   
See also in sourсe #XX -- [ Pg.34 ]




SEARCH



Agitated reactors

Agitation

Agitators

Mechanical Agitators

Mechanical agitation

Reactor agitation

Slurries agitation

Slurry reactor

© 2024 chempedia.info