Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mobility of surfactants

The procedure of evaluating self-diffusion data in terms of microstructure is to calculate the reduced or normalized diffusion coefficient, D/Dq, for the two solvents. Do being the neat solvent value under the appropriate conditions. Here we also have to account for reductions in D resulting from factors other than microstructure, mainly solvation effects. As discussed above, solvation will lead to a reduction of solvent diffusion that is proportional to the surfactant concentration. Normally the correction has been empirical and based on diffusion studies for cases of established structure, notably micellar solutions. We need to distinguish between corrections due to polar head-water and alkyl chain-oil interactions. The latter have often been considered insignificant, but a closer analysis (either experimental or theoretical) is lacking. However, it is probably reasonable to assume, for example, that the resistance to translation is not very different in the lipophilic part of the surfactant film and in an alkane solution. (This is supported by observations of molecular mobilities of surfactant allQ l chains on the same order of magnitude as for a neat hydrocarbon.)... [Pg.321]

Wen, X., He, H Zhu, J Jun, Y, Ye, C and Deng, F. (2006) Arrangement, conformation, and mobility of surfactant molecules intercalated in montmorillonite prepared at different pillaring reagent concentrations as studied by solid-state NMR spectroscopy. Journal of Colloid and Interface Science, 299, 754-760. [Pg.101]

Extensive discussions have focused on the conformation of the alkyl chains in the interior ". It has been has demonstrated that the alkyl chains of micellised surfactant are not fully extended. Starting from the headgroup, the first two or three carbon-carbon bonds are usually trans, whereas gauche conformations are likely to be encountered near the centre of tlie chain ". As a result, the methyl termini of the surfactant molecules can be located near the surface of the micelle, and have even been suggested to be able to protrude into the aqueous phase "". They are definitely not all gathered in the centre of tire micelle as is often suggested in pictorial representations. NMR studies have indicated that the hydrocarbon chains in a micelle are highly mobile, comparable to the mobility of a liquid alkane ... [Pg.127]

Mass-action model of surfactant micelle formation was used for development of the conceptual retention model in micellar liquid chromatography. The retention model is based upon the analysis of changing of the sorbat microenvironment in going from mobile phase (micellar surfactant solution, containing organic solvent-modifier) to stationary phase (the surfactant covered surface of the alkyl bonded silica gel) according to equation ... [Pg.81]

The model was tested by the micellar liquid chromatography separ ation of the five rarbornicin derivatives and four ethers of hydroxybenzoic acid. Micellar mobile phases were made with the sodium dodecylsulfate and 1-pentanol or isopentanol as modifier. In all cases the negative signs of the coefficients x and y indicate that at transition of the sorbat from the mobile on the stationar y phase the number of surfactant monomers as well as the number of modifier molecules increases in its microenvironment. [Pg.81]

Also, the segmental mobility and preferential conformation of surfactant alkyl chains is perturbed by water addition [92,99]. [Pg.482]

Coveney, FM Strange, JH Smith, AL Smith, EG, NMR Studies of Electrophoretic Mobility in Surfactant Systems, Colloids and Surfaces 36, 193, 1989. [Pg.610]

Alkaline agents can reduce surfactant losses and permit the use of low concentrations of surfactants. Laboratory tests show that alkali and synthetic surfactants produce interfacial properties that are more favorable for increased oil mobilization than either alkali or surfactant alone [639,640]. [Pg.199]

Waste gas from produced hydrocarbons can be safely disposed by reinjecting into a formation. The waste gas is mixed with a surfactant to form a foam that, in turn, is placed within a disposal zone of a subterranean formation. The waste gas is trapped within the foam, thereby reducing the mobility of the gas in the formation, which, in turn, restricts the ability of the waste gas to readily flow out of the disposal zone and into the producing zone of the formation. The waste gas foam can be placed into the formation by coinjecting the surfactant and the waste gas, or it can be formed in situ by first injecting the surfactant and then injecting the waste gas [1356]. [Pg.204]

Coinjection of a low-concentration surfactant and a biopolymer, followed by a polymer buffer for mobility control, leads to reduced chemical consumption and high oil recovery. There may be synergistic effects between the surfactant and the polymer in a dynamic flood situation. The chromatographic separation of surfactant and polymer is important to obtain good oil recovery and low surfactant retention [1721],... [Pg.207]

Recent research and field tests have focused on the use of relatively low concentrations or volumes of chemicals as additives to other oil recovery processes. Of particular interest is the use of surfactants as CO (184) and steam mobility control agents (foam). Also combinations of older EOR processes such as surfactant enhanced alkaline flooding and alkaline-surfactant-polymer flooding have been the subjects of recent interest. Older technologies polymer flooding (185,186) and micellar flooding (187-189) have been the subject of recent reviews. In 1988 84 commercial products polymers, surfactants, and other additives, were listed as being marketed by 19 companies for various enhanced oil recovery applications (190). [Pg.29]

The displacing fluid may be steam, supercritical carbon dioxide, hydrocarbon miscible gases, nitrogen or solutions of surfactants or polymers instead of water. The VSE increases with lower mobility ratio values (253). A mobility ratio of 1.0 is considered optimum. The mobility of water is usually high relative to that of oil. Steam and oil-miscible gases such as supercritical carbon dioxide also exhibit even higher mobility ratios and consequent low volumetric sweep efficiencies. [Pg.33]

The WAG process has been used extensively in the field, particularly in connection with supercritical CO injection and some success have been reported.(365-367). However, it would be desirable to develop a method to further reduce the viscosity of injected gas, particularly CO, the most commonly used gas (actually injected as a supercritical fluid) in the U.S.. While limited studies on increasing the viscosity of C0 though the use of supercritical CO -soluble polymers and other additives have been reported (368, see also Chapter 29 and references therein), the major direction of research has been the use of surfactants to form low mobility foams or supercritical C0 dispersions within the formation. [Pg.38]

The reason for wide-spread interest in the use of surfactants as gas mobility control agents (369) is their effectiveness at concentrations of 0.1%wt (377) or less (364). This low chemical requirement can significantly improve process economics. [Pg.39]

Both nonionic and anionic surfactants have been evaluated in this application (488,489) including internal olefin sulfonates (487, 490), linear alkylxylene sulfonates (490), petroleum sulfonates (491), alcohol ethoxysulfates (487,489,492). Ethoxylated alcohols have been added to some anionic surfactant formulations to improve interfacial properties (486). The use of water thickening polymers, either xanthan or polyacrylamide to reduce injected fluid mobility mobility has been proposed for both alkaline flooding (493) and surfactant enhanced alkaline flooding (492). Crosslinked polymers have been used to increase volumetric sweep efficiency of surfactant - polymer - alkaline agent formulations (493). [Pg.44]

As noted previously, both surfactants and polymers may be used to reduce the mobility of these low viscosity injectants. [Pg.44]

Also, other dependent variables associated with CO2-foam mobility measurements, such as surfactant concentrations and C02 foam fractions have been investigated as well. The surfactants incorporated in this experiment were carefully chosen from the information obtained during the surfactant screening test which was developed in the laboratory. In addition to the mobility measurements, the dynamic adsorption experiment was performed with Baker dolomite. The amount of surfactant adsorbed per gram of rock and the chromatographic time delay factor were studied as a function of surfactant concentration at different flow rates. [Pg.502]

In this section the laboratory measurements of CC -foam mobility are presented along with the description of the experimental procedure, the apparatus, and the evaluation of the mobility. The mobility results are shown in the order of the effects of surfactant concentration, CC -foam fraction, and rock permeability. The preparation of the surfactant solution is briefly mentioned in the Effect of Surfactant Concentrations section. A zwitteronic surfactant Varion CAS (ZS) from Sherex (23) and an anionic surfactant Enordet X2001 (AEGS) from Shell were used for this experimental study. [Pg.504]

The Effect of Surfactant Concentrations, The effect of surfactant concentrations on CC -foam mobility is plotted on a log-log scale in Figure 3. The presented data points are the average mobility values obtained from a superficial velocity range of 2-10 ft/day, with the CC -foam fraction was kept constant around 80%. With Berea sandstone, ZS and AEGS surfactants were used. The measured average permeability of the Berea sandstone with 1% brine was 305 md. With Baker dolomite, AEGS was used to make comparison with Berea sandstone. The permeability of the Baker dolomite was 6.09 md measured with 1% brine solution. [Pg.506]


See other pages where Mobility of surfactants is mentioned: [Pg.149]    [Pg.285]    [Pg.338]    [Pg.284]    [Pg.818]    [Pg.401]    [Pg.244]    [Pg.95]    [Pg.149]    [Pg.285]    [Pg.338]    [Pg.284]    [Pg.818]    [Pg.401]    [Pg.244]    [Pg.95]    [Pg.254]    [Pg.442]    [Pg.236]    [Pg.218]    [Pg.412]    [Pg.210]    [Pg.719]    [Pg.722]    [Pg.155]    [Pg.565]    [Pg.29]    [Pg.275]    [Pg.293]    [Pg.298]    [Pg.502]    [Pg.503]    [Pg.504]    [Pg.504]    [Pg.505]    [Pg.506]    [Pg.507]    [Pg.509]    [Pg.510]   
See also in sourсe #XX -- [ Pg.244 ]




SEARCH



© 2024 chempedia.info