Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Miniaturized

In addition to these technical advancements the testing-system was miniaturized and mostly integrated during the last few years. [Pg.753]

One of the most fascinating recent developments in biology has been the discovery of numerous highly complex biopolymer assemblies (see also section C2.14.2.3) such as the ribosome or the bacterial flagellum [93, 94 and 95], the envy of nanoteclmologists seeking to miniaturize man-made mechanical devices (note that the word machinery is also sometimes used to refer to multienzyme complexes such as the proteasome [96]), and an entire... [Pg.2831]

When the curvature of the reaction vessel is too great for the efficient operation of the bar type magnetic stirrer, a miniature solenoid-operated reciprocating stirrer may be employed (Fig. XII, 2, 19). This stirrer may be easilj constructed from a telephone relay or electric bell. It is advisable to have a control for adjusting the stroke while running. [Pg.1108]

A fuller description of the microchannel plate is presented in Chapter 30. Briefly, ions traveling down the flight tube of a TOF instrument are separated in time. As each m/z collection of ions arrives at the collector, it may be spread over a small area of space (Figure 27.3). Therefore, so as not to lose ions, rather than have a single-point ion collector, the collector is composed of an array of miniature electron multipliers (microchannels), which are all connected to one electrified plate, so, no matter where an ion of any one m/z value hits the front of the array, its arrival is recorded. The microchannel plate collector could be crudely compared to a satellite TV dish receiver in that radio waves of the same frequency but spread over an area are all collected and recorded at the same time of course, the multichannel plate records the arrival of ions not radio waves. [Pg.197]

An array ion collector (detector) consists of a large number of miniature electron multiplier elements arranged side by side along a plane. Point ion collectors gather and detect ions sequentially (all ions are focused at one point one after another), but array collectors gather and detect all ions simultaneously (all ions are focused onto the array elements at the same time). Array detectors are particularly useful for situations in which ionization occurs within a very short space of time, as with some ionization sources, or in which only trace quantities of a substance are available. For these very short time scales, only the array collector can measure a whole spectrum or part of a spectrum satisfactorily in the time available. [Pg.210]

A different form of miniature electron multiplier. The curved shape is used to reduce backscattering of the electrons. The final output of electrons flows along a wire to an amplifier. [Pg.215]

The advantages of miniaturization are now being exploited in areas beyond microelectronics. Adaptation of materials and processes originally devised for semiconductor manufacture has allowed fabrication of sensors (for example, pressure meters and accelerometers used in the automotive industry) (6,7), complex optical (8) and micromechanical (6,7,9) assembHes, and devices for medical diagnostics (6,7,10) using Hthographic resists. [Pg.113]

Parylene s use in the medical field is linked to electronics. Certain pacemaker manufacturers use it as a protective conformal coating on pacemaker circuitry (69). The coated circuitry is sealed in a metal can, so that the parylene coating serves only as a backup should the primary barrier leak. There is also interest in its use as an electrode insulation in the fabrication of miniature electrodes for long-term implantation to record or to stimulate neurons in the central or peripheral nervous system, as the "front end" of experimental neural prostheses (70). One report describes the 3-yr survival of functioning parylene-coated electrodes in the brain of a monkey (71). [Pg.442]

Dry Lubricant. The static and dynamic coefficients of friction for the parylenes are low and virtually the same. This feature is an advantage in the use of a parylene coating as a dry lubricant on the bearing surfaces of miniature stepping motors. Coating a threaded ferrite core significantly reduces the abrasion to coil forms (82). [Pg.443]

Presentiy, multilayer capacitors and packaging make up more than half the electronic ceramics market. For multilayer capacitors, more than 20 biUion units are manufactured a year, outnumbering by far any other electronic ceramic component. Multilayer ceramics and hybrid packages consist of alternating layers of dielectric and metal electrodes, as shown in Figures 5 and 6, respectively. The driving force for these compact configurations is miniaturization. [Pg.311]

Multilayer Capacitors. Multilayer capacitors (MLC), at greater than 30 biUion units per year, outnumber any other ferroelectric device in production. Multilayer capacitors consist of alternating layers of dielectric material and metal electrodes, as shown in Figure 7. The reason for this configuration is miniaturization of the capacitor. Capacitance is given by... [Pg.206]

Immersion electrodes are the most common glass electrodes. These are roughly cylindrical and consist of a barrel or stem of inert glass that is sealed at the lower end to a tip, which is often hemispherical, of special pH-responsive glass. The tip is completely immersed in the solution during measurements. Miniature and microelectrodes are also used widely, particularly in physiological studies. Capillary electrodes permit the use of small samples and provide protection from exposure to air during the measurements, eg, for the determination of blood pH. This type of electrode may be provided with a water jacket for temperature control. [Pg.466]

Diffusion. Another technique for modifying the electrical properties of siUcon and siUcon-based films involves introducing small amounts of elements having differing electrical compositions, dopants, into substrate layers. Diffusion is commonly used. There are three ways dopants can be diffused into a substrate film (/) the surface can be exposed to a chemical vapor of the dopant at high temperatures, or (2) a doped-oxide, or (J) an ion-implanted layer can be used. Ion implantation is increasingly becoming the method of choice as the miniaturization of ICs advances. However, diffusion is used in... [Pg.349]

A third type of commercial matches popular in South America is the wax vestas with a center of cotton threads or of a roUed and compressed thin and tough paper surrounded by and impregnated with wax each match is a miniature candle of long (ca 1 min) burning time. [Pg.1]

The next generation of amperomethc enzyme electrodes may weU be based on immobilization techniques that are compatible with microelectronic mass-production processes and are easy to miniaturize (42). Integration of enzymes and mediators simultaneously should improve the electron-transfer pathway from the active site of the enzyme to the electrode. [Pg.46]

Miniature Continuous Monitor, Tech. Bull, MDA Scientific, Inc. Park Ridge, lU., Dec. 1974. [Pg.265]

One successful total artificial heart is ABIOMED s electric TAH. This artificial heart consists of two seamless blood pumps which assume the roles of the natural heart s two ventricles (Fig. 7). The pumps and valves are fabricated from a polyurethane, Angioflex. Small enough to fit the majority of the adult population, the heart s principal components are implanted in the cavity left by the removal of the diseased natural heart. A modest sized battery pack carried by the patient suppHes power to the drive system. Miniaturized electronics control the artificial heart which mns as smoothly and quietly as the natural heart. Once implanted, the total artificial heart performs the critical function of pumping blood to the entire body (6). [Pg.183]


See other pages where Miniaturized is mentioned: [Pg.1061]    [Pg.441]    [Pg.1248]    [Pg.2201]    [Pg.313]    [Pg.379]    [Pg.220]    [Pg.397]    [Pg.199]    [Pg.341]    [Pg.442]    [Pg.442]    [Pg.308]    [Pg.384]    [Pg.72]    [Pg.197]    [Pg.206]    [Pg.418]    [Pg.397]    [Pg.548]    [Pg.57]    [Pg.216]    [Pg.224]    [Pg.46]    [Pg.49]    [Pg.343]    [Pg.129]    [Pg.436]    [Pg.50]    [Pg.176]    [Pg.299]    [Pg.394]    [Pg.190]   
See also in sourсe #XX -- [ Pg.172 ]




SEARCH



Miniature

Miniaturization

© 2024 chempedia.info